mean_op_npu.cc 3.7 KB
Newer Older
O
OleNet 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/mean_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
14
#include "paddle/fluid/platform/float16.h"
O
OleNet 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MeanNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* out = ctx.Output<framework::LoDTensor>("Out");

    std::vector<int> axes;

28 29
    framework::NPUAttributeMap attr_input = {{"keep_dims", false},
                                             {"axes", axes}};
O
OleNet 已提交
30 31 32

    out->mutable_data<T>(ctx.GetPlace());

33
    auto runner = NpuOpRunner("ReduceMeanD", {*x}, {*out}, attr_input);
O
OleNet 已提交
34 35

    auto stream =
36 37
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
O
OleNet 已提交
38 39 40 41 42 43 44 45 46
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class MeanGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto stream =
47 48
        context.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
O
OleNet 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    auto grad = context.Input<Tensor>(framework::GradVarName("Out"));

    PADDLE_ENFORCE_EQ(grad->numel(), 1,
                      platform::errors::InvalidArgument(
                          "Mean Gradient Input Tensor len should be 1. But "
                          "received Out@Grad's elements num is %d.",
                          grad->numel()));

    auto IG = context.Output<Tensor>(framework::GradVarName("X"));
    IG->mutable_data<T>(context.GetPlace());

    // ones
    Tensor ones(grad->type());
    ones.mutable_data<T>(IG->dims(), context.GetPlace());
    auto runner_ones = NpuOpRunner("OnesLike", {*IG}, {ones}, {});
    runner_ones.Run(stream);

    // means
    Tensor mean_tensor(grad->type());
    mean_tensor.Resize({1});
    mean_tensor.mutable_data<T>(context.GetPlace());
71 72
    FillNpuTensorWithConstant<T>(
        &mean_tensor, static_cast<T>(1.0 / static_cast<float>(IG->numel())));
O
OleNet 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    // means mul ones
    Tensor mean_ma(grad->type());
    mean_ma.Resize(IG->dims());
    mean_ma.mutable_data<T>(context.GetPlace());
    auto runner_mul_1 = NpuOpRunner("Mul", {mean_tensor, ones}, {mean_ma}, {});
    runner_mul_1.Run(stream);

    // and mul grad
    auto runner_mul_2 = NpuOpRunner("Mul", {mean_ma, *grad}, {*IG}, {});
    runner_mul_2.Run(stream);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
93
    mean, ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, int>,
O
OleNet 已提交
94 95 96 97 98
    ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, double>,
    ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>)

REGISTER_OP_NPU_KERNEL(
99
    mean_grad, ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, int>,
O
OleNet 已提交
100 101 102
    ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, double>,
    ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>)