test_activation_nn_grad.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker

from decorator_helper import prog_scope


class TestReluDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.relu(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestLeakyReluDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        alpha = 0.2
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.leaky_relu(x, alpha=alpha)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


D
Double_V 已提交
78 79 80 81
class TestELUDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
D
Double_V 已提交
82
        eps = 1e-6
D
Double_V 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        alpha = 1.1
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.elu(x, alpha=alpha)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
class TestSqrtDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.sqrt(x)
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


class TestSquareDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
129
        # the shape of input variable should be clearly specified, not inlcude -1.
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.square(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
class TestAbsDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.abs(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


174 175
if __name__ == "__main__":
    unittest.main()