accuracy_op.cu 3.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <thrust/execution_policy.h>
#include <thrust/reduce.h>
W
Wu Yi 已提交
17
#include "paddle/fluid/operators/metrics/accuracy_op.h"
D
dzhwinter 已提交
18
#include "paddle/fluid/platform/cuda_primitives.h"
W
Wu Yi 已提交
19
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/platform/gpu_info.h"
武毅 已提交
21 22 23

namespace paddle {
namespace operators {
24
using platform::PADDLE_CUDA_NUM_THREADS;
武毅 已提交
25

武毅 已提交
26 27 28
template <int BlockSize>
__global__ void AccuracyCudaKernel(const int N, const int D,
                                   const int64_t* Xdata,
D
Dong Zhihong 已提交
29
                                   const int64_t* labeldata, int* correct_data,
C
chengduo 已提交
30
                                   float* accuracy, int* total_data) {
31 32 33 34 35 36 37 38
  int count = 0;
  __shared__ int total[BlockSize];

  // support only 1 block
  for (int i = threadIdx.x; i < (N); i += BlockSize) {
    for (int j = 0; j < D; ++j) {
      if (Xdata[i * D + j] == labeldata[i]) {
        ++count;
武毅 已提交
39 40 41 42
        break;
      }
    }
  }
43 44 45 46 47 48
  total[threadIdx.x] = count;
  __syncthreads();

  // reduce the count with init value 0, and output accuracy.
  int result = thrust::reduce(thrust::device, total, total + BlockSize, 0);
  if (threadIdx.x == 0) {
D
Dong Zhihong 已提交
49
    *correct_data = result;
50
    *accuracy = static_cast<float>(result) / static_cast<float>(N);
C
chengduo 已提交
51
    *total_data = N;
52
  }
武毅 已提交
53 54 55
}

template <typename T>
Y
Yu Yang 已提交
56
class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
武毅 已提交
57 58 59
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
60
                   "It must use CUDAPlace.");
武毅 已提交
61 62
    auto* inference = ctx.Input<Tensor>("Out");
    auto* indices = ctx.Input<Tensor>("Indices");
武毅 已提交
63
    auto* label = ctx.Input<Tensor>("Label");
D
Dong Zhihong 已提交
64

武毅 已提交
65
    auto* accuracy = ctx.Output<Tensor>("Accuracy");
D
Dong Zhihong 已提交
66 67
    auto* correct = ctx.Output<Tensor>("Correct");
    auto* total = ctx.Output<Tensor>("Total");
武毅 已提交
68 69
    // FIXME(typhoonzero): only support indices currently
    // if add support for output values, how to detect the data type?
武毅 已提交
70 71
    const int64_t* indices_data = indices->data<int64_t>();
    const int64_t* label_data = label->data<int64_t>();
D
Dong Zhihong 已提交
72 73 74

    int* correct_data = correct->mutable_data<int>(ctx.GetPlace());
    int* total_data = total->mutable_data<int>(ctx.GetPlace());
武毅 已提交
75 76
    float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());

D
Dong Zhihong 已提交
77
    int num_samples = static_cast<int>(inference->dims()[0]);
武毅 已提交
78
    size_t infer_width = inference->dims()[1];
D
dzhwinter 已提交
79 80
    auto stream = ctx.cuda_device_context().stream();
    platform::GpuMemsetAsync(accuracy_data, 0, sizeof(float), stream);
武毅 已提交
81 82 83 84 85

    if (num_samples == 0) {
      return;
    }

D
dzhwinter 已提交
86 87
    AccuracyCudaKernel<
        PADDLE_CUDA_NUM_THREADS><<<1, PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
D
Dong Zhihong 已提交
88
        num_samples, infer_width, indices_data, label_data, correct_data,
C
chengduo 已提交
89
        accuracy_data, total_data);
武毅 已提交
90 91 92 93 94 95
  }
};

}  // namespace operators
}  // namespace paddle

D
Dong Zhihong 已提交
96 97
// FIXME(typhoonzero): types of T is for inference data.
// label data is always int64
W
Wu Yi 已提交
98 99 100 101
REGISTER_OP_CUDA_KERNEL(
    accuracy, paddle::operators::AccuracyOpCUDAKernel<float>,
    paddle::operators::AccuracyOpCUDAKernel<double>,
    paddle::operators::AccuracyOpCUDAKernel<paddle::platform::float16>);