ut_helper.h 4.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

22 23 24
#include <string>
#include <vector>

Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
  std::uniform_real_distribution<double> dist(1.0, 10.0);
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);
  auto* data = tensor->mutable_data<float>(place);
  for (size_t i = 0; i < num_elements; i++) {
    *(data + i) = random(0., 1.);
  }
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

64
  explicit TRTConvertValidation(int batch_size, int workspace_size = 1024) {
Y
Yan Chunwei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    // create engine.
    engine_.reset(new TensorRTEngine(10, 1 << 10, &stream_));
    engine_->InitNetwork();

    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
  }

  // Declare a Variable as input with random initialization.
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

  void DeclVar(const std::string& name, const nvinfer1::Dims& dims) {
    platform::CPUPlace place;
    platform::CPUDeviceContext ctx(place);

    // Init Fluid tensor.
    std::vector<int> dim_vec(dims.nbDims);
    for (int i = 0; i < dims.nbDims; i++) {
      dim_vec[i] = dims.d[i];
    }
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place, ctx);
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

    OpConverter op_converter;
    op_converter.ConvertOp(desc, engine_.get());

    engine_->FreezeNetwork();

    // Declare outputs.
    op_desc_.reset(new framework::OpDesc(desc, nullptr, nullptr));

    // Set Inputs.
    for (const auto& input : op_desc_->InputArgumentNames()) {
      auto* var = scope_.FindVar(input);
      PADDLE_ENFORCE(var);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      engine_->SetInputFromCPU(
          input, static_cast<void*>(tensor->data<float>()),
          sizeof(float) *
              analysis::AccuDims(tensor->dims(), tensor->dims().size()));
    }
  }

  void Execute(int batch_size) {
    // Execute Fluid Op
    // Execute TRT
    platform::CPUPlace place;
    platform::CPUDeviceContext ctx(place);
    engine_->Execute(batch_size);

    op_->Run(scope_, place);

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      std::vector<float> fluid_out;
      std::vector<float> trt_out(200);
      engine_->GetOutputInCPU(output, &trt_out[0], 200 * sizeof(float));

      auto* var = scope_.FindVar(output);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
      // Compare two output
      ASSERT_FALSE(fluid_out.empty());
      for (size_t i = 0; i < fluid_out.size(); i++) {
        EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 0.001);
      }
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  framework::Scope scope_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle