elementwise_functor.h 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18
#include "paddle/fluid/framework/array.h"
#include "paddle/fluid/platform/complex.h"
19 20 21
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/hostdevice.h"
22
#include "paddle/pten/kernels/funcs/elementwise_functor.h"
23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

// Define the binary functors used in elementwise ops.

// Add
template <typename T>
31 32
using AddFunctor = pten::funcs::AddFunctor<T>;

33
template <typename T>
34
using InverseAddFunctor = pten::funcs::InverseAddFunctor<T>;
35 36 37

// Subtract
template <typename T>
38 39
using SubFunctor = pten::funcs::SubtractFunctor<T>;

40
template <typename T>
41
using InverseSubFunctor = pten::funcs::InverseSubtractFunctor<T>;
42 43 44

// Multiply
template <typename T>
45 46
using MulFunctor = pten::funcs::MultiplyFunctor<T>;

47
template <typename T>
48
using InverseMulFunctor = pten::funcs::InverseMultiplyFunctor<T>;
49 50 51

// Divide
template <typename T>
52
using DivFunctor = pten::funcs::DivideFunctor<T>;
53

54 55
template <typename T>
using InverseDivFunctor = pten::funcs::InverseDivideFunctor<T>;
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

// Floor Divide
template <typename T>
struct FloorDivFunctor {
  inline HOSTDEVICE T operator()(const T& a, const T& b) const {
    PADDLE_ENFORCE(b != 0, DIV_ERROR_INFO);
    return static_cast<T>(std::trunc(a / b));
  }
};

template <typename T>
struct InverseFloorDivFunctor {
  inline HOSTDEVICE T operator()(const T& a, const T& b) const {
    PADDLE_ENFORCE(a != 0, DIV_ERROR_INFO);
    return static_cast<T>(std::trunc(b / a));
  }
};

#undef DIV_ERROR_INFO

// Maximum
template <typename T>
struct MaxFunctor {
  inline HOSTDEVICE T operator()(const T& a, const T& b) const {
    return a > b ? a : b;
  }
};

// Minmum
template <typename T>
struct MinFunctor {
  inline HOSTDEVICE T operator()(const T& a, const T& b) const {
    return a < b ? a : b;
  }
};

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
template <typename T>
using Complex = paddle::platform::complex<T>;

template <typename InT, typename OutT>
struct DivGradXYFunctor {
  inline HOSTDEVICE paddle::framework::Array<OutT, 2> operator()(const InT a,
                                                                 const InT b,
                                                                 const InT c) {
    // dx = dout / y
    // dy = - dout * out / y
    paddle::framework::Array<OutT, 2> outs;
    outs[0] = a / c;
    outs[1] = -a * b / c;
    return outs;
  }
};

template <typename InT, typename OutT>
struct DivGradXYFunctor<Complex<InT>, Complex<OutT>> {
  inline HOSTDEVICE paddle::framework::Array<Complex<OutT>, 2> operator()(
      const Complex<InT> a, const Complex<InT> b, const Complex<InT> c) {
    paddle::framework::Array<Complex<OutT>, 2> outs;
    Complex<InT> c_conj(c.real, -c.imag);
    Complex<InT> out_div_c_conj((b / c).real, -(b / c).imag);
    outs[0] = a / c_conj;
    outs[1] = -a * out_div_c_conj;
    return outs;
  }
};

// Float div grad
template <typename T>
struct DivGradXFunctor {
  inline HOSTDEVICE T operator()(const T& a, const T& b) const { return a / b; }
};

// Complex div grad
template <typename T>
struct DivGradXFunctor<Complex<T>> {
  inline HOSTDEVICE Complex<T> operator()(const Complex<T>& a,
                                          const Complex<T>& b) const {
    Complex<T> b_conj(b.real, -b.imag);
    return a / b_conj;
  }
};

// Float mul and div
template <typename T>
struct DivGradYFunctor {
  inline HOSTDEVICE T operator()(const T& a, const T& b, const T& c) const {
    return -a * b / c;
  }
};

// Complex mul and div
template <typename T>
struct DivGradYFunctor<Complex<T>> {
  inline HOSTDEVICE Complex<T> operator()(const Complex<T>& a,
                                          const Complex<T>& b,
                                          const Complex<T>& c) const {
    Complex<T> out_div_c_conj((b / c).real, -(b / c).imag);
    return -a * out_div_c_conj;
  }
};

L
LJQ❤️ 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
// Fmax
template <typename T>
struct FMaxFunctor {
  inline HOSTDEVICE T operator()(const T& a, const T& b) const {
    return std::fmax(a, b);
  }
};

template <>
struct FMaxFunctor<paddle::platform::float16> {
  inline HOSTDEVICE paddle::platform::float16 operator()(
      const paddle::platform::float16& a,
      const paddle::platform::float16& b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmax(float_a, float_b);
    return static_cast<paddle::platform::float16>(result);
  }
};

// Fmin
template <typename T>
struct FMinFunctor {
  inline HOSTDEVICE T operator()(const T& a, const T& b) const {
    return std::fmin(a, b);
  }
};

template <>
struct FMinFunctor<paddle::platform::float16> {
  inline HOSTDEVICE paddle::platform::float16 operator()(
      const paddle::platform::float16& a,
      const paddle::platform::float16& b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmin(float_a, float_b);
    return static_cast<paddle::platform::float16>(result);
  }
};

197 198
}  // namespace operators
}  // namespace paddle