test_imperative_deepcf.py 7.1 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import random
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
from paddle.fluid.imperative.base import to_variable

NUM_USERS = 100
NUM_ITEMS = 1000

BATCH_SIZE = 32
NUM_BATCHES = 2


class MLP(fluid.imperative.Layer):
    def __init__(self, name_scope):
        super(MLP, self).__init__(name_scope)
        self._user_latent = fluid.imperative.FC(self.full_name(), 256)
        self._item_latent = fluid.imperative.FC(self.full_name(), 256)

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
                    fluid.imperative.FC(
                        self.full_name(), self._hid_sizes[i], act='relu')))
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
                    fluid.imperative.FC(
                        self.full_name(), self._hid_sizes[i], act='relu')))

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


class DMF(fluid.imperative.Layer):
    def __init__(self, name_scope):
        super(DMF, self).__init__(name_scope)
        self._user_latent = fluid.imperative.FC(self.full_name(), 256)
        self._item_latent = fluid.imperative.FC(self.full_name(), 256)
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
                    fluid.imperative.FC(
                        self.full_name(), self._hid_sizes[i], act='relu')))
        self._mat

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
        match_vec = fluid.layers.concat(
            [users, items], axis=len(users.shape) - 1)
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


class DeepCF(fluid.imperative.Layer):
    def __init__(self, name_scope):
        super(DeepCF, self).__init__(name_scope)

        self._user_emb = fluid.imperative.Embedding(self.full_name(),
                                                    [NUM_USERS, 256])
        self._item_emb = fluid.imperative.Embedding(self.full_name(),
                                                    [NUM_ITEMS, 256])

        self._mlp = MLP(self.full_name())
        self._dmf = DMF(self.full_name())
        self._match_fc = fluid.imperative.FC(self.full_name(), 1, act='sigmoid')

    def forward(self, users, items):
        users_emb = self._user_emb(users)
        items_emb = self._item_emb(items)

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
        predictive = fluid.layers.concat(
            [mlp_predictive, dmf_predictive],
            axis=len(mlp_predictive.shape) - 1)
        prediction = self._match_fc(predictive)
        return prediction


def get_data():
    user_ids = []
    item_ids = []
    labels = []
    for uid in range(NUM_USERS):
        for iid in range(NUM_ITEMS):
            # 10% positive
            label = float(random.randint(1, 10) == 1)
            user_ids.append(uid)
            item_ids.append(iid)
            labels.append(label)
    indices = np.arange(NUM_USERS * NUM_ITEMS)
    np.random.shuffle(indices)
    users_np = np.array(user_ids, dtype=np.int64)[indices]
    items_np = np.array(item_ids, dtype=np.int64)[indices]
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
           np.expand_dims(labels_np, -1)


class TestImperativeDeepCF(unittest.TestCase):
    def test_gan_float32(self):
        seed = 90
        users_np, items_np, labels_np = get_data()

        startup = fluid.Program()
        startup.random_seed = seed
        main = fluid.Program()
        main.random_seed = seed

        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
            users = fluid.layers.data('users', [1], dtype='int64')
            items = fluid.layers.data('items', [1], dtype='int64')
            labels = fluid.layers.data('labels', [1], dtype='float32')

            deepcf = DeepCF('deepcf')
            prediction = deepcf(users, items)
            loss = fluid.layers.reduce_sum(
                fluid.layers.log_loss(prediction, labels))
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
            for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                static_loss = exe.run(
                    main,
                    feed={
                        users.name: users_np[slice:slice + BATCH_SIZE],
                        items.name: items_np[slice:slice + BATCH_SIZE],
                        labels.name: labels_np[slice:slice + BATCH_SIZE]
                    },
                    fetch_list=[loss])[0]
                sys.stderr.write('static loss %s\n' % static_loss)

        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            deepcf = DeepCF('deepcf')
            for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                prediction = deepcf(
                    to_variable(users_np[slice:slice + BATCH_SIZE]),
                    to_variable(items_np[slice:slice + BATCH_SIZE]))
                loss = fluid.layers.reduce_sum(
                    fluid.layers.log_loss(prediction,
                                          to_variable(labels_np[slice:slice +
                                                                BATCH_SIZE])))
                loss._backward()
                adam = fluid.optimizer.AdamOptimizer(0.01)
                adam.minimize(loss)
                deepcf.clear_gradients()
                dy_loss = loss._numpy()

        self.assertEqual(static_loss, dy_loss)


if __name__ == '__main__':
    unittest.main()