concat_mkldnn_op.cc 8.0 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
M
Michal Gallus 已提交
16 17
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::concat;
using mkldnn::stream;
using platform::to_void_cast;

static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
33 34 35 36
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
M
Michal Gallus 已提交
37 38 39
  }
}

40
static memory::primitive_desc CreateMemPrimDesc(const Tensor& input,
41 42
                                                const mkldnn::engine& engine,
                                                const memory::data_type& dt) {
43
  const auto dims = paddle::framework::vectorize<int>(input.dims());
M
Michal Gallus 已提交
44
  const auto format = input.format();
45
  auto description = memory::desc(dims, dt, format);
M
Michal Gallus 已提交
46 47 48 49
  auto mem_prim_desc = memory::primitive_desc(description, engine);
  return mem_prim_desc;
}

50
static MKLDNNMemoryFormat GetDstMemFormat(
51
    const concat::primitive_desc& concat_pd) {
52
  return (MKLDNNMemoryFormat)concat_pd.dst_primitive_desc().desc().data.format;
53 54
}

M
Michal Gallus 已提交
55 56 57 58 59 60 61 62
static platform::CPUPlace GetCpuPlace(
    const paddle::framework::ExecutionContext& ctx) {
  auto place = ctx.GetPlace();
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
                 "It must use CPUPlace.");
  return boost::get<platform::CPUPlace>(place);
}

M
Michal Gallus 已提交
63
static const mkldnn::engine& GetMKLDNNEngine(
64 65 66
    const paddle::framework::ExecutionContext& ctx) {
  auto& dev_ctx = ctx.template device_context<platform::MKLDNNDeviceContext>();
  return dev_ctx.GetEngine();
M
Michal Gallus 已提交
67
}
M
Michal Gallus 已提交
68

M
Michal Gallus 已提交
69 70 71 72 73
template <typename T>
class ConcatPrimitiveFactory {
 public:
  concat::primitive_desc CreateConcatPrimDescriptor(
      const std::vector<const Tensor*> multi_input, Tensor* output,
74 75 76 77
      int concat_axis, const mkldnn::engine& mkldnn_engine,
      const memory::data_type& dt = memory::data_type::f32) {
    CreateSourcesDescriptors(multi_input, mkldnn_engine, dt);
    auto dst_desc = CreateDstMemDescriptor(output, dt);
M
Michal Gallus 已提交
78 79
    return concat::primitive_desc(dst_desc, concat_axis, srcs_pd);
  }
M
Michal Gallus 已提交
80

M
Michal Gallus 已提交
81 82 83
  concat CreateConcatPrimitive(const concat::primitive_desc& concat_pd,
                               Tensor* output, platform::CPUPlace place) {
    CreateSourcePrimitiveAts();
84 85
    dst_mem = CreateDstMemory(concat_pd, output, place);
    return concat(concat_pd, inputs, dst_mem.get());
M
Michal Gallus 已提交
86 87
  }

88 89 90 91 92 93 94 95 96 97 98 99 100
  void SetSrcDataHandleByIndex(const std::vector<memory>& srcs, const size_t& i,
                               void* handler) {
    srcs[i].set_data_handle(handler);
  }

  void SetDstDataHandle(const memory& dst_mem, void* handler) {
    dst_mem.set_data_handle(handler);
  }

  std::vector<memory> GetSrcs() { return srcs; }

  memory GetDst() { return dst_mem.get(); }

M
Michal Gallus 已提交
101
 private:
102 103
  memory::desc CreateDstMemDescriptor(Tensor* output,
                                      const memory::data_type& dt) {
104
    auto dst_dims = paddle::framework::vectorize<int>(output->dims());
105
    return memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);
M
Michal Gallus 已提交
106 107 108
  }

  mkldnn::memory CreateDstMemory(const concat::primitive_desc& concat_pd,
109 110
                                 Tensor* output,
                                 const platform::CPUPlace& place) {
M
Michal Gallus 已提交
111 112 113
    return memory(concat_pd.dst_primitive_desc(),
                  output->mutable_data<T>(place));
  }
M
Michal Gallus 已提交
114

M
Michal Gallus 已提交
115
  void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
116 117
                                const mkldnn::engine& mkldnn_engine,
                                const memory::data_type& dt) {
M
Michal Gallus 已提交
118
    for (size_t i = 0; i < multi_input.size(); i++) {
119 120
      auto mem_prim_desc =
          CreateMemPrimDesc(*multi_input[i], mkldnn_engine, dt);
121 122 123
      srcs_pd.push_back(mem_prim_desc);
      srcs.push_back(
          memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>())));
M
Michal Gallus 已提交
124
    }
M
Michal Gallus 已提交
125
  }
M
Michal Gallus 已提交
126

M
Michal Gallus 已提交
127
  void CreateSourcePrimitiveAts() {
M
Michal Gallus 已提交
128 129 130 131
    inputs.reserve(srcs.size());
    for (size_t i = 0; i < srcs.size(); i++) {
      inputs.push_back(srcs[i]);
    }
M
Michal Gallus 已提交
132 133 134 135 136 137
  }

 private:
  std::vector<memory::primitive_desc> srcs_pd;
  std::vector<memory> srcs;
  std::vector<primitive::at> inputs;
138 139
  boost::optional<memory> dst_mem;
};
M
Michal Gallus 已提交
140 141 142 143 144 145 146 147 148

template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto multi_input = ctx.MultiInput<Tensor>("X");
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
    int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
149 150 151 152 153 154
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    auto place = GetCpuPlace(ctx);

    memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(multi_input[0]->type());
M
Michal Gallus 已提交
155 156

    ConcatPrimitiveFactory<T> prim_creator;
157 158 159 160
    std::string key = platform::CreateKey(
        paddle::framework::vectorize<int>(multi_input[0]->dims()), concat_axis,
        ctx.op().Output("Out"), dt, multi_input[0]->format(),
        platform::ThreadIDasStr());
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    const std::string key_prim = key + "@concat_p";
    const std::string key_concat_pd = key + "@concat_pd";
    const std::string key_srcs = key + "@concat_srcs";
    const std::string key_dst = key + "@concat_dst";

    std::shared_ptr<concat::primitive_desc> concat_pd;
    std::shared_ptr<std::vector<memory>> srcs;
    std::shared_ptr<memory> dst_mem;
    auto concat_p = std::static_pointer_cast<concat>(dev_ctx.GetBlob(key_prim));

    if (concat_p == nullptr) {
      const auto& mkldnn_engine = dev_ctx.GetEngine();
      concat_pd = std::make_shared<concat::primitive_desc>(
          prim_creator.CreateConcatPrimDescriptor(multi_input, output,
                                                  static_cast<int>(concat_axis),
                                                  mkldnn_engine, dt));
      concat_p = std::make_shared<concat>(
          prim_creator.CreateConcatPrimitive(*concat_pd, output, place));
      srcs = std::make_shared<std::vector<memory>>(prim_creator.GetSrcs());
      dst_mem = std::make_shared<memory>(prim_creator.GetDst());
      dev_ctx.SetBlob(key_prim, concat_p);
      dev_ctx.SetBlob(key_concat_pd, concat_pd);
      dev_ctx.SetBlob(key_srcs, srcs);
      dev_ctx.SetBlob(key_dst, dst_mem);
    } else {
      srcs = std::static_pointer_cast<std::vector<memory>>(
          dev_ctx.GetBlob(key_srcs));
      dst_mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_dst));
      concat_pd = std::static_pointer_cast<concat::primitive_desc>(
          dev_ctx.GetBlob(key_concat_pd));
      for (size_t i = 0; i < multi_input.size(); i++) {
        prim_creator.SetSrcDataHandleByIndex(
            *srcs, i, to_void_cast<T>(multi_input[i]->data<T>()));
      }
      prim_creator.SetDstDataHandle(*dst_mem, output->mutable_data<T>(place));
    }

    stream(stream::kind::eager).submit({*concat_p}).wait();
M
Michal Gallus 已提交
199

200 201
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetDstMemFormat(*concat_pd));
M
Michal Gallus 已提交
202 203 204 205 206 207 208 209
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
210 211 212
                   ops::ConcatMKLDNNOpKernel<float>,
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);