utils.cc 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/utils.h"
16
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
17
#include "paddle/fluid/eager/api/utils/global_utils.h"
18
#include "paddle/fluid/eager/api/utils/hook_utils.h"
19
#include "paddle/fluid/eager/tensor_wrapper.h"
20

21 22
#include "paddle/phi/api/all.h"
#include "paddle/phi/common/layout.h"
23
#include "paddle/phi/core/compat/convert_utils.h"
24
#include "paddle/phi/core/tensor_meta.h"
25 26

#include "paddle/fluid/framework/data_layout.h"
27
#include "paddle/fluid/framework/phi_utils.h"
28
#include "paddle/fluid/framework/variable.h"
29

30 31 32
PADDLE_DEFINE_EXPORTED_bool(retain_grad_for_all_tensor, true,
                            "retain grad for all tensor");

33
namespace egr {
34 35 36 37
/**
 * Implementation of Eager Utils.
**/

38
AutogradMeta* EagerUtils::autograd_meta(paddle::experimental::Tensor* target) {
39 40 41 42 43 44 45 46 47
  auto* p_autograd_meta = target->get_autograd_meta();
  if (!p_autograd_meta) {
    auto p_autograd_meta_ptr = std::make_shared<AutogradMeta>();
    p_autograd_meta = p_autograd_meta_ptr.get();
    target->set_autograd_meta(p_autograd_meta_ptr);
  }
  return static_cast<AutogradMeta*>(p_autograd_meta);
}

48 49
AutogradMeta* EagerUtils::unsafe_autograd_meta(
    const paddle::experimental::Tensor& target) {
50 51 52 53 54 55 56 57
  auto* p_autograd_meta = target.get_autograd_meta();
  PADDLE_ENFORCE(p_autograd_meta,
                 paddle::platform::errors::Fatal(
                     "Null autograd_meta gotten from unsafe_autograd_meta()"));
  return static_cast<AutogradMeta*>(p_autograd_meta);
}

std::vector<AutogradMeta*> EagerUtils::unsafe_autograd_meta(
58
    const std::vector<paddle::experimental::Tensor>& targets) {
59
  std::vector<AutogradMeta*> metas;
60
  metas.reserve(targets.size());
61
  for (const paddle::experimental::Tensor& t : targets) {
62
    metas.emplace_back(unsafe_autograd_meta(t));
63 64 65 66
  }
  return metas;
}

67
AutogradMeta* EagerUtils::nullable_autograd_meta(
68
    const paddle::experimental::Tensor& target) {
69 70 71 72 73 74
  auto* p_autograd_meta = target.get_autograd_meta();
  if (!p_autograd_meta) return nullptr;

  return static_cast<AutogradMeta*>(p_autograd_meta);
}

H
hong 已提交
75 76 77 78 79 80 81 82
AutogradMeta* EagerUtils::nullable_autograd_meta(
    paddle::optional<const paddle::experimental::Tensor&> target) {
  if (target.get_ptr() != nullptr) {
    return EagerUtils::nullable_autograd_meta(*(target.get_ptr()));
  }
  return nullptr;
}

83
std::vector<AutogradMeta*> EagerUtils::nullable_autograd_meta(
84
    const std::vector<paddle::experimental::Tensor>& targets) {
85 86
  std::vector<AutogradMeta*> metas;
  metas.reserve(targets.size());
87
  for (const paddle::experimental::Tensor& t : targets) {
88 89 90 91 92
    metas.emplace_back(nullable_autograd_meta(t));
  }
  return metas;
}

W
wanghuancoder 已提交
93 94 95 96 97 98 99 100 101 102
std::vector<AutogradMeta*> EagerUtils::nullable_autograd_meta(
    const std::vector<paddle::experimental::Tensor*>& targets) {
  std::vector<AutogradMeta*> metas;
  metas.reserve(targets.size());
  for (const paddle::experimental::Tensor* t : targets) {
    metas.emplace_back(nullable_autograd_meta(*t));
  }
  return metas;
}

103
std::vector<AutogradMeta*> EagerUtils::autograd_meta(
104
    std::vector<paddle::experimental::Tensor>* targets) {
105 106 107
  std::vector<AutogradMeta*> ret;
  ret.reserve(targets->size());

108
  // for autograd_meta we can tolerent it has nullptr.
109 110 111
  for (size_t i = 0; i < targets->size(); i++) {
    auto* p_autograd_meta = autograd_meta(&((*targets)[i]));
    ret.emplace_back(p_autograd_meta);
112 113 114 115
  }
  return ret;
}

W
wanghuancoder 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128
std::vector<AutogradMeta*> EagerUtils::autograd_meta(
    std::vector<paddle::experimental::Tensor*>* targets) {
  std::vector<AutogradMeta*> ret;
  ret.reserve(targets->size());

  // for autograd_meta we can tolerent it has nullptr.
  for (size_t i = 0; i < targets->size(); i++) {
    auto* p_autograd_meta = autograd_meta((*targets)[i]);
    ret.emplace_back(p_autograd_meta);
  }
  return ret;
}

129
std::pair<size_t, size_t> EagerUtils::OutRankInfo(
130
    const paddle::experimental::Tensor& target) {
131 132 133 134
  return unsafe_autograd_meta(target)->OutRankInfo();
}

std::shared_ptr<GradNodeBase> EagerUtils::grad_node(
135
    const paddle::experimental::Tensor& target) {
136 137 138 139 140 141
  auto* meta = nullable_autograd_meta(target);
  if (meta) {
    return meta->GetMutableGradNode();
  } else {
    return nullptr;
  }
142 143
}

144 145 146 147 148 149 150 151 152 153
paddle::experimental::Tensor* EagerUtils::mutable_grad(
    const paddle::experimental::Tensor& target) {
  auto* meta = nullable_autograd_meta(target);
  if (meta) {
    return meta->MutableGrad();
  } else {
    return nullptr;
  }
}

154 155 156
void EagerUtils::SetHistory(std::vector<AutogradMeta*>* autograd_metas,
                            const std::shared_ptr<GradNodeBase>& grad_node) {
  for (const auto& autograd_meta : *autograd_metas) {
J
Jiabin Yang 已提交
157 158 159 160
    if (autograd_meta->GradNode()) {
      VLOG(7) << "Should not set grad node twice, original node is:"
              << autograd_meta->GradNode()->name()
              << "current is: " << grad_node->name();
161
    }
162 163 164 165 166 167
    autograd_meta->SetGradNode(grad_node);
  }
}

void EagerUtils::SetHistory(AutogradMeta* autograd_meta,
                            const std::shared_ptr<GradNodeBase>& grad_node) {
J
Jiabin Yang 已提交
168 169 170 171
  if (autograd_meta->GradNode()) {
    VLOG(7) << "Should not set grad node twice, original node is:"
            << autograd_meta->GradNode()->name()
            << "current is: " << grad_node->name();
172
  }
173 174 175 176 177 178 179 180 181 182 183 184 185 186
  autograd_meta->SetGradNode(grad_node);
}

void EagerUtils::SetOutRankWithSlot(std::vector<AutogradMeta*>* targets,
                                    size_t slot_id) {
  // Set OutRankInfo from 0 to size of targets
  for (size_t i = 0; i < targets->size(); i++) {
    (*targets)[i]->SetSingleOutRankWithSlot(slot_id, i);
  }
}
void EagerUtils::SetOutRankWithSlot(AutogradMeta* target, size_t slot_id) {
  target->SetSingleOutRankWithSlot(slot_id, 0);
}

187
std::shared_ptr<egr::EagerVariable> EagerUtils::TrySyncToVar(
188
    const paddle::experimental::Tensor& tensor) {
189
  return std::make_shared<egr::EagerVariable>(tensor);
190 191
}

192
std::vector<std::shared_ptr<egr::EagerVariable>> EagerUtils::TrySyncToVars(
193
    const paddle::experimental::Tensor& tensor) {
194 195 196
  return {TrySyncToVar(tensor)};
}

197
std::vector<std::shared_ptr<egr::EagerVariable>> EagerUtils::TrySyncToVars(
198 199 200 201 202 203 204
    paddle::experimental::Tensor* tensor) {
  PADDLE_ENFORCE_NOT_NULL(
      tensor,
      paddle::platform::errors::Fatal(
          "Should Not Pass Empty tensor pointer in, since only output can "
          "reach this, please check output value and make sure it's not null"));
  return {TrySyncToVar(*tensor)};
205 206
}

207
std::vector<std::shared_ptr<egr::EagerVariable>> EagerUtils::TrySyncToVars(
208
    const std::vector<paddle::experimental::Tensor*>& tensors) {
209
  std::vector<std::shared_ptr<EagerVariable>> res;
210 211 212
  size_t num = tensors.size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
213 214 215 216 217 218 219 220
    auto* tensor = tensors[i];
    PADDLE_ENFORCE_NOT_NULL(
        tensor, paddle::platform::errors::Fatal(
                    "Tensor is null and cannot be copied. "
                    "We are tring to TrySyncToVars tensor from its "
                    "shared_ptr, this error may indicate some outputs "
                    "are nullptr"));
    res.emplace_back(TrySyncToVar(*tensor));
221 222 223 224
  }
  return res;
}

225
std::vector<std::shared_ptr<egr::EagerVariable>> EagerUtils::TrySyncToVars(
226
    const std::vector<paddle::experimental::Tensor>& tensors) {
227
  std::vector<std::shared_ptr<EagerVariable>> res;
228 229 230
  size_t num = tensors.size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
231
    res.emplace_back(TrySyncToVar(tensors[i]));
232 233 234 235
  }
  return res;
}

236
std::vector<std::shared_ptr<EagerVariable>> EagerUtils::CreateVars(
237
    const size_t num) {
238
  std::vector<std::shared_ptr<EagerVariable>> res;
239 240 241
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    res.emplace_back(
242
        new EagerVariable(egr::Controller::Instance().GenerateUniqueName()));
243 244 245 246
  }
  return res;
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
void EagerUtils::HandleViewBetweenInputAndOutput(
    const std::shared_ptr<EagerVariable>& input_var,
    const std::shared_ptr<EagerVariable>& view_output_var) {
  PADDLE_ENFORCE_EQ(
      input_var->Var().IsInitialized(), true,
      paddle::platform::errors::InvalidArgument(
          "Tensor %s has not been initialized!", input_var->name()));

  if (phi::DenseTensor::classof(input_var->GetTensorBase().get())) {
    auto input_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(input_var->GetTensorBase());
    PADDLE_ENFORCE_EQ(
        input_dense_tensor->IsInitialized(), true,
        paddle::platform::errors::InvalidArgument(
            "DenseTensor %s has not been initialized!", input_var->name()));

    auto* view_output_tensor =
        view_output_var->MutableVar()->GetMutable<phi::DenseTensor>();
    view_output_tensor->ShareBufferWith(*input_dense_tensor);
    view_output_tensor->ShareInplaceVersionCounterWith(*input_dense_tensor);

    VLOG(3) << "Perform View between Output Var(" << view_output_var->name()
            << ") and Input Var(" << input_var->name()
            << "), share allocation and inplace version.";
  }
}

274
std::vector<paddle::experimental::Tensor> EagerUtils::GetOutputs(
275
    const std::vector<std::shared_ptr<EagerVariable>>& outs) {
276
  std::vector<paddle::experimental::Tensor> res;
277 278 279 280 281 282 283 284 285
  res.reserve(outs.size());
  for (const auto& out : outs) {
    PADDLE_ENFORCE_NOT_NULL(
        out.get(), paddle::platform::errors::Fatal(
                       "Eager Tensor %s is null and cannot be copied. "
                       "We are tring to Get Output tensor from its "
                       "shared_ptr, this error may indicate some outputs "
                       "are nullptr",
                       out->name()));
286
    res.emplace_back(out->GetTensorBase(), out->name());
287 288 289 290
  }
  return res;
}

291
paddle::experimental::Tensor EagerUtils::GetOutput(
292
    const std::shared_ptr<EagerVariable>& out) {
293 294 295 296 297 298
  PADDLE_ENFORCE_NOT_NULL(
      out.get(), paddle::platform::errors::Fatal(
                     "Eager Tensor %s is null and cannot be copied. We "
                     "are tring to Get Output tensor from its shared_ptr, "
                     "this error may indicate output is nullptr",
                     out->name()));
299 300 301
  return paddle::experimental::Tensor(out->GetTensorBase(), out->name());
}

302 303
void EagerUtils::GetOutput(const std::shared_ptr<EagerVariable>& out,
                           paddle::experimental::Tensor* out_var) {
304
  PADDLE_ENFORCE_NOT_NULL(
305 306 307 308 309 310
      out_var, paddle::platform::errors::Fatal(
                   "Tensor is null and cannot be copied. "
                   "We are tring to OverwriteOutput from its "
                   "shared_ptr, this error may indicate some outputs "
                   "are nullptr"));
  out_var->set_impl(out->GetTensorBase());
311
  out_var->set_name(out->name());
312 313
}

314
void EagerUtils::GetOutputs(
315
    const std::vector<std::shared_ptr<EagerVariable>>& outs,
316
    std::vector<paddle::experimental::Tensor>* result) {
317
  for (size_t i = 0; i < outs.size(); i++) {
318
    result->emplace_back(outs[i]->GetTensorBase());
319
  }
320 321
}

322 323 324
void EagerUtils::GetOutputs(
    const std::vector<std::shared_ptr<EagerVariable>>& outs,
    const std::vector<paddle::experimental::Tensor*>& out_var) {
325 326
  for (size_t i = 0; i < outs.size(); i++) {
    PADDLE_ENFORCE_NOT_NULL(
327
        out_var[i], paddle::platform::errors::Fatal(
328 329 330 331
                        "Tensor is null and cannot be copied. "
                        "We are tring to OverwriteOutput from its "
                        "shared_ptr, this error may indicate some outputs "
                        "are nullptr"));
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    out_var[i]->set_impl(outs[i]->GetTensorBase());
  }
}

void EagerUtils::GetOutputs(const std::shared_ptr<EagerVariable>& out,
                            std::vector<paddle::experimental::Tensor>* result) {
  result->emplace_back(out->GetTensorBase());
}

void EagerUtils::GetOutputs(
    const std::shared_ptr<EagerVariable>& out,
    const std::vector<paddle::experimental::Tensor*>& out_var) {
  PADDLE_ENFORCE_NOT_NULL(
      out_var[0], paddle::platform::errors::Fatal(
                      "Tensor is null and cannot be copied. "
                      "We are tring to OverwriteOutput from its "
                      "shared_ptr, this error may indicate some outputs "
                      "are nullptr"));
  out_var[0]->set_impl(out->GetTensorBase());
}

void EagerUtils::Output2Result(
    const std::vector<paddle::experimental::Tensor*>& out_var,
    std::vector<paddle::experimental::Tensor>* result) {
  result->reserve(out_var.size());
  for (size_t i = 0; i < out_var.size(); i++) {
    result->emplace_back(*out_var[i]);
359 360 361 362
  }
}

paddle::experimental::Tensor EagerUtils::RecoverTensorWrapper(
363 364
    TensorWrapper* tw) {
  return tw->recover();
365 366
}

367
std::vector<paddle::experimental::Tensor> EagerUtils::RecoverTensorWrapper(
368
    std::vector<TensorWrapper>* tw) {
369
  std::vector<paddle::experimental::Tensor> ret;
370
  for (auto& t : *tw) {
371
    ret.emplace_back(t.recover());
372 373 374 375
  }
  return ret;
}

376 377
void EagerUtils::CheckAndRetainGrad(
    const paddle::experimental::Tensor& tensor) {
378 379
  VLOG(6) << "Check RetainGradForTensor: " << tensor.name();
  if (FLAGS_retain_grad_for_all_tensor) {
380
    VLOG(6) << "RetainGradForTensor: " << tensor.name();
381 382 383 384 385
    egr::egr_utils_api::RetainGradForTensor(tensor);
  }
}

void EagerUtils::CheckAndRetainGrad(
386
    const std::vector<paddle::experimental::Tensor>& tensors) {
387 388
  if (FLAGS_retain_grad_for_all_tensor) {
    for (auto& tensor : tensors) {
389
      VLOG(6) << "RetainGradForTensor: " << tensor.name();
390 391 392 393 394
      egr::egr_utils_api::RetainGradForTensor(tensor);
    }
  }
}

W
wanghuancoder 已提交
395 396 397 398 399 400 401 402 403 404
void EagerUtils::CheckAndRetainGrad(
    const std::vector<paddle::experimental::Tensor*>& tensors) {
  if (FLAGS_retain_grad_for_all_tensor) {
    for (auto& tensor : tensors) {
      VLOG(6) << "RetainGradForTensor: " << tensor->name();
      egr::egr_utils_api::RetainGradForTensor(*tensor);
    }
  }
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
std::shared_ptr<egr::GradNodeBase> EagerUtils::GetGradAccumulationNode(
    const paddle::experimental::Tensor& tensor) {
  auto* autograd_ptr = nullable_autograd_meta(tensor);
  if (!autograd_ptr) {
    return nullptr;
  }
  auto node_ptr = autograd_ptr->GetMutableGradNode();
  if (node_ptr && node_ptr.get()) {
    if (!autograd_ptr->StopGradient()) {
      auto accumulation_ptr =
          std::dynamic_pointer_cast<GradNodeAccumulation>(node_ptr);
      if (accumulation_ptr) {
        return accumulation_ptr;
      } else {
        // Current GradNode is not a egr::GradNodeAccumulation
        PADDLE_THROW(paddle::platform::errors::Fatal(
            "GetGradAccumulationNode should only be called on leaf tensor, but "
            "target tensor: %s has GradNode which is not a "
            "GradNodeAccumulation, and this should not happend unless target "
            "tensor is modified by some ops and calling set history for it.",
            tensor.name()));
      }
    } else {
      // Current Tensor does not have grad since it's stop_gradient is true;
      return nullptr;
    }
  } else {
    if (!autograd_ptr->StopGradient()) {
      VLOG(6) << "Add GradNodeAccumulation for tensor: " << tensor.name();
434 435
      autograd_ptr->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(autograd_ptr));
436 437 438 439 440 441 442
      return autograd_ptr->GetMutableGradNode();
    } else {
      return nullptr;
    }
  }
}

443 444 445 446
void EagerUtils::FillZeroForEmptyGradInputs(
    std::vector<std::vector<paddle::experimental::Tensor>>* in_grads,
    const std::vector<std::vector<GradSlotMeta>>& grad_in_metas) {
  for (size_t i = 0; i < in_grads->size(); i++) {
447
    for (size_t j = 0; j < (*in_grads)[i].size(); j++) {
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
      paddle::experimental::Tensor& grad = (*in_grads)[i][j];
      if (!grad.is_initialized()) {
        const GradSlotMeta& grad_in_meta = grad_in_metas[i][j];
        PADDLE_ENFORCE(
            grad_in_meta.HasTensorMeta(),
            paddle::platform::errors::Fatal(
                "Unable to fill empty grad inputs due to empty GradSlotMeta"));

        const auto& tensor_meta = grad_in_meta.GetTensorMeta();
        phi::Place place = grad_in_meta.GetPlace();

        auto tensor_with_zero = paddle::experimental::full(
            phi::vectorize(tensor_meta.dims), 0.0, tensor_meta.dtype, place);
        grad.set_impl(tensor_with_zero.impl());
      }
    }
  }
}

467
}  // namespace egr