CostLayer.h 8.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <vector>
#include "Layer.h"

namespace paddle {

/**
 * Base class for a particular type of cost layer.
 * This type of cost should have one data layer, one label layer
 * and an optional weight layer as input.
 * The derived class should implemnt forwardImp() and backwardImp()
 * which calculate the cost for data and label. The weight is automatically
 * handled by the base class.
 */
class CostLayer : public Layer {
public:
  explicit CostLayer(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  LayerPtr getOutputLayer() { return inputLayers_[0]; }

  LayerPtr getLabelLayer() { return inputLayers_[1]; }

  virtual void forward(PassType passType);

  virtual void backward(const UpdateCallback& callback = nullptr);

45 46
  virtual void forwardImp(Matrix& outputValue,
                          Argument& label,
Z
zhangjinchao01 已提交
47 48
                          Matrix& cost) = 0;

49 50
  virtual void backwardImp(Matrix& outputValue,
                           Argument& label,
Z
zhangjinchao01 已提交
51 52 53 54 55 56 57
                           Matrix& outputGrad) = 0;

protected:
  LayerPtr weightLayer_;
  real coeff_;
};

58 59 60 61 62 63 64
/**
 * The cross-entropy loss for multi-class classification task.
 * The loss function is:
 *
 * \f[
 * L = - \sum_{i}{t_{k} * log(P(y=k))}
 * \f]
Z
zhangjinchao01 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
 */
class MultiClassCrossEntropy : public CostLayer {
public:
  explicit MultiClassCrossEntropy(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};

78 79 80 81 82 83 84 85 86 87 88 89 90 91
/**
 * The cross-entropy with self-normalization for multi-class classification.
 *
 * The loss function is:
 * \f[
 * L = \sum_{i}[-log(P(x_{i})) + alpha * log(Z(x_{i})^2)]
 * \f]
 *
 * The \f$Z(x)\f$ is the softmax normalizer.
 *
 * [1] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar,
 *     Richard Schwartz, and John Makhoul. Fast and robust neural
 *     network joint models for statistical machine translation.
 *     In Proceedings of the ACL 2014 Conference.
Z
zhangjinchao01 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 */
class MultiClassCrossEntropyWithSelfNorm : public CostLayer {
public:
  explicit MultiClassCrossEntropyWithSelfNorm(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);

protected:
  MatrixPtr sftMaxSum_;
  MatrixPtr sumInv_;
};

109 110 111 112 113
/**
 * The cross-entropy for soft binary class.
 * \f[
 * L = \sum_i (\sum_j -y_j(i)*log(x_j(i))-(1-y_j(i))*log(1-x_j(i)))
 * \f]
Z
zhangjinchao01 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
 */
class SoftBinaryClassCrossEntropy : public CostLayer {
public:
  explicit SoftBinaryClassCrossEntropy(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);

protected:
  MatrixPtr targetPerDim_;
};

130 131 132 133
/**
 * This cost layer compute Euclidean (L2) loss for real-valued regression
 * tasks.
 * \f[
X
xuwei06 已提交
134
 * L = \sum_{i=1}^N {|| \hat{y}_i - y_i||_2^2}
135 136
 * \f]
 */
Z
zhangjinchao01 已提交
137 138 139 140 141 142 143 144 145 146 147 148
class SumOfSquaresCostLayer : public CostLayer {
public:
  explicit SumOfSquaresCostLayer(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};

149 150 151 152 153 154 155 156 157 158 159
/**
 * A cost layer for learning to rank (LTR) task. This layer contains at leat
 * three inputs.
 * \f[
 *  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
 *  o_{i,j} =  o_i - o_j  \\
 *  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
 * \f]
 *
 * [1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to
 *      Rank useing Gradient Descent.
Z
zhangjinchao01 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 */
class RankingCost : public Layer {
public:
  explicit RankingCost(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  LayerPtr getOutputLayer(size_t i) { return inputLayers_[i]; }

  LayerPtr getLabelLayer() { return inputLayers_[2]; }

  void forward(PassType passType);

  void backward(const UpdateCallback& callback = nullptr);

  void onPassEnd();

  void forwardImp(Matrix& output, Argument& label, Matrix& cost) {
    (void)output;
    (void)label;
    (void)cost;
  }

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad) {
    (void)outputValue;
    (void)label;
    (void)outputGrad;
  }

private:
  double posPairCount_;
  double negPairCount_;
  MatrixPtr margin_;
  MatrixPtr marginGrad_;
194
  /// if input label is put in ids (not value), copy to this buffer.
Z
zhangjinchao01 已提交
195 196 197 198
  MatrixPtr labelBuf_;
  LayerPtr weightLayer_;
};

199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * LambdaRank os a method for learning arbitrary information retrieval
 * measures. It can be applied to any algorithm that learns through gradient
 * descent. LambdaRank is a listwise method, in that the cost depends on the
 * sorted order of the documents. LambdaRank gives the gradient of cost
 * function:
 *
 * \f[
 * \lambda_{ij} = \frac{1}{1 + e^{o_i - o_j}} \left| \Delta_{NDCG} \right|
 * \f]
 *
 * [1] Christopher J.C. Burges, Robert Ragno, Quoc Viet Le. Learning to Rank
 *     with Nonsmooth Cost Functions.
 */
Z
zhangjinchao01 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
class LambdaCost : public Layer {
public:
  explicit LambdaCost(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  LayerPtr getOutputLayer() { return inputLayers_[0]; }

  LayerPtr getScoreLayer() { return inputLayers_[1]; }

  void forward(PassType passType);

  void backward(const UpdateCallback& callback = nullptr);

  void onPassEnd();

  real calcNDCG(const real* outputScore, const real* score, int size);
230 231 232
  void calcGrad(const real* outputScore,
                const real* score,
                real* gradData,
Z
zhangjinchao01 已提交
233 234 235 236 237 238 239 240 241 242 243 244
                int size);

private:
  MatrixPtr marginGrad_;
  int truncationSize_;
  int maxSortSize_;
  std::vector<std::pair<real, int>> scorePair_;
  std::vector<std::pair<real, int>> outputScorePair_;
  std::vector<real> scoreVec_;
};

/**
245 246 247 248 249
 * Cross entropy for multi binary labels.
 * \f[
 * cost[i] = -sum(label[i][j]*log(output[i][j]) +
 *            (1-label[i][j])*log(1-output[i][j]))
 * \f]
Z
zhangjinchao01 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
 */
class MultiBinaryLabelCrossEntropy : public CostLayer {
protected:
  MatrixPtr targetPerDim_;

public:
  explicit MultiBinaryLabelCrossEntropy(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};

266 267
/**
 * Huber loss for robust 2-classes classification.
Z
zhangjinchao01 已提交
268 269
 *
 * For label={0, 1}, let y=2*label-1. Given output f, the loss is:
270 271 272 273 274 275 276 277
 * \f[
 * Loss =
 * \left\{\begin{matrix}
 *  4 * y * f     &   \textit{if}  \ \  y* f < -1 \\
 *  (1 - y * f)^2 &  \textit{if}   \ \  -1 < y * f < 1  \\
 *  0             &                    \textit{otherwise}
 * \end{matrix}\right.
 * \f]
Z
zhangjinchao01 已提交
278 279 280
 */
class HuberTwoClass : public CostLayer {
  std::vector<Argument> tmpCpuInput_;
281

Z
zhangjinchao01 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
public:
  explicit HuberTwoClass(const LayerConfig& config) : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void forwardImpIn(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);

  void backwardImpIn(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};

typedef std::shared_ptr<CostLayer> CostLayerPtr;
}  // namespace paddle