gaussian_random_op.cc 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dongzhihong 已提交
14

Q
qijun 已提交
15
#include <random>
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
D
dongzhihong 已提交
17

18 19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dongzhihong 已提交
22 23
namespace paddle {
namespace operators {
D
dongzhihong 已提交
24

Q
qijun 已提交
25
template <typename T>
Y
Yu Yang 已提交
26
class CPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
27 28
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
29 30
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
31 32 33
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
34
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
35 36 37 38 39 40
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
41
    int64_t size = tensor->numel();
Q
qijun 已提交
42
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
43 44 45 46 47
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
48
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
49 50
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
51

52
  void InferShape(framework::InferShapeContext* ctx) const override {
53 54
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "GaussianRandom");

T
tangwei12 已提交
55
    auto shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
Q
qijun 已提交
56
    std::vector<int64_t> temp;
57 58
    temp.reserve(shape.size());
    for (auto dim : shape) {
Q
qijun 已提交
59 60
      temp.push_back(static_cast<int64_t>(dim));
    }
61 62 63 64
    PADDLE_ENFORCE_GT(shape.size(), 0UL,
                      platform::errors::InvalidArgument(
                          "Attribute(shape) of GaussianRandomOp must be set "
                          "and shape.size() > 0."));
Q
Qiao Longfei 已提交
65
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
D
dongzhihong 已提交
66
  }
Y
Yu Yang 已提交
67

68
 protected:
69
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
70
      const framework::ExecutionContext& ctx) const override {
71 72 73 74 75 76 77 78 79 80 81
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

Y
Yu Yang 已提交
82
    return framework::OpKernelType(
83
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
84
        ctx.device_context(), layout, library);
Y
Yu Yang 已提交
85
  }
D
dongzhihong 已提交
86 87
};

D
dongzhihong 已提交
88
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
89
 public:
Y
Yu Yang 已提交
90
  void Make() override {
K
kexinzhao 已提交
91
    AddOutput("Out", "Output matrix of gaussian random op");
92

T
tangwei12 已提交
93 94 95
    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) "
                                  "The dimension of random tensor.");
K
kexinzhao 已提交
96 97 98 99 100 101 102 103
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
Q
qijun 已提交
104
    AddAttr<int>("seed",
K
kexinzhao 已提交
105
                 "(int, default 0) "
Q
qijun 已提交
106
                 "Random seed of generator."
107 108 109
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
110
        .SetDefault(0);
F
fengjiayi 已提交
111
    AddAttr<int>("dtype",
K
kexinzhao 已提交
112 113
                 "(int, default 5(FP32)) "
                 "Output data type.")
114
        .SetDefault(framework::proto::VarType::FP32);
115 116 117
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
118 119 120 121 122 123
    AddComment(R"DOC(
GaussianRandom Operator.

Used to initialize tensors with gaussian random generator.

)DOC");
D
dongzhihong 已提交
124 125 126 127 128 129
  }
};

}  // namespace operators
}  // namespace paddle

130
namespace ops = paddle::operators;
F
fengjiayi 已提交
131 132
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
133 134 135 136 137
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>,
                       ops::CPUGaussianRandomKernel<double>);
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
                       ops::CPUGaussianRandomKernel<float>,
                       ops::CPUGaussianRandomKernel<double>);