test_seq_conv.py 7.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
import unittest
import numpy as np
import random
from op_test import OpTest


class TestSeqProject(OpTest):
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_conv'

        if self.context_length == 1 \
                and self.context_start == 0 \
                and self.padding_trainable:
            print "If context_start is 0 " \
                  "and context_length is 1," \
                  " padding_trainable should be false."
            return

        # one level, batch size
        x = np.random.uniform(0.1, 1, [self.input_size[0],
                                       self.input_size[1]]).astype('float32')
C
chengduoZH 已提交
37 38 39
        w = np.random.uniform(0.1, 1, [
            self.context_length * self.input_size[1], self.output_represention
        ]).astype('float32')
C
chengduoZH 已提交
40 41 42 43 44 45 46

        begin_pad = np.max([0, -self.context_start])
        end_pad = np.max([0, self.context_start + self.context_length - 1])
        total_pad = begin_pad + end_pad
        padding_data = np.random.uniform(
            0.1, 1, [total_pad, self.input_size[1]]).astype('float32')
        self.pad_data = padding_data
C
chengduoZH 已提交
47 48
        self.inputs = {
            'X': (x, self.lod),
C
chengduoZH 已提交
49
            'Filter': w,
C
chengduoZH 已提交
50
        }
C
chengduoZH 已提交
51 52 53 54 55 56 57 58 59 60
        self.inputs_val = ['X', 'Filter']
        self.inputs_val_no_x = ['Filter']
        self.inputs_val_no_f = ['X']

        if total_pad != 0:
            self.inputs['PaddingData'] = padding_data
            self.inputs_val = ['X', 'PaddingData', 'Filter']
            self.inputs_val_no_x = ['PaddingData', 'Filter']
            self.inputs_val_no_f = ['PaddingData', 'X']

C
chengduoZH 已提交
61
        self.attrs = {
C
chengduoZH 已提交
62 63 64 65
            'contextStart': self.context_start,
            'contextLength': self.context_length,
            'paddingTrainable': self.padding_trainable,
            'contextStride': self.context_stride
C
chengduoZH 已提交
66
        }
C
chengduoZH 已提交
67 68
        out = np.zeros(
            (self.input_size[0], self.output_represention)).astype('float32')
C
chengduoZH 已提交
69 70 71 72 73 74
        self.outputs = {'Out': out}
        self.compute()

    def compute(self):
        x, lod = self.inputs['X']
        filter = self.inputs['Filter']
C
chengduoZH 已提交
75
        pading_data = self.pad_data
C
chengduoZH 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        out = np.zeros((self.input_size[0], self.context_length *
                        self.input_size[1])).astype('float32')
        lod = lod[0]
        begin_pad = np.max([0, -self.context_start])

        for i in range(len(lod) - 1):
            for j in range(self.context_length):
                in_begin = lod[i] + self.context_start + j
                in_end = lod[i + 1] + self.context_start + j
                out_begin = lod[i]
                out_end = lod[i + 1]
                if in_begin < lod[i]:
                    pad_size = np.min([lod[i] - in_begin, lod[i + 1] - lod[i]])
                    if self.padding_trainable:
                        sub_w = pading_data[j:j + pad_size, :]
                        out[lod[i]:lod[i] + pad_size, j * self.input_size[1]:(
                            j + 1) * self.input_size[1]] = sub_w
                    out_begin = lod[i] + pad_size
                    in_begin = lod[i]

                if in_end > lod[i + 1]:
                    pad_size = np.min(
                        [in_end - lod[i + 1], lod[i + 1] - lod[i]])
                    if self.padding_trainable:
                        sub_w = pading_data[begin_pad + self.context_start + j -
                                            pad_size:begin_pad +
                                            self.context_start + j, :]
                        out[lod[i + 1] - pad_size:lod[i + 1], j * self.
                            input_size[1]:(j + 1) * self.input_size[1]] = sub_w
                    in_end = lod[i + 1]
                    out_end = lod[i + 1] - pad_size
                if in_end <= in_begin:
                    continue

                in_sub = x[in_begin:in_end, :]
                out[out_begin:out_end, j * self.input_size[1]:(j + 1) *
                    self.input_size[1]] += in_sub

C
chengduoZH 已提交
114
        np.dot(out, filter, out=self.outputs['Out'])
C
chengduoZH 已提交
115 116 117 118 119 120 121

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
122
                set(self.inputs_val), 'Out', max_relative_error=0.05)
C
chengduoZH 已提交
123 124 125 126 127 128

    def test_check_grad_input(self):
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
129
            no_grad_set=set(self.inputs_val_no_x))
C
chengduoZH 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143

    def test_check_grad_padding_data(self):
        if self.padding_trainable:
            self.check_grad(
                ['PaddingData'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X', 'Filter']))

    def test_check_grad_Filter(self):
        self.check_grad(
            ['Filter'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
144
            no_grad_set=set(self.inputs_val_no_f))
C
chengduoZH 已提交
145

C
chengduoZH 已提交
146
    def test_check_grad_input_filter(self):
C
chengduoZH 已提交
147 148 149 150 151 152
        if self.padding_trainable:
            self.check_grad(
                ['X', 'Filter'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['PaddingData']))
C
chengduoZH 已提交
153 154 155 156

    def test_check_grad_padding_input(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
157
                self.inputs_val_no_f,
C
chengduoZH 已提交
158 159 160 161 162 163 164
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['Filter']))

    def test_check_grad_padding_filter(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
165
                self.inputs_val_no_x,
C
chengduoZH 已提交
166 167 168 169
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X']))

C
chengduoZH 已提交
170 171 172 173 174 175 176 177 178
    def init_test_case(self):
        self.input_row = 11
        self.context_start = 0
        self.context_length = 1
        self.padding_trainable = False
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
        self.lod = [[0, 4, 5, 8, self.input_row]]
C
chengduoZH 已提交
179
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
180 181 182 183 184 185 186 187 188 189 190 191


class TestSeqProjectCase1(TestSeqProject):
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
        self.lod = [[0, 4, 5, 8, self.input_row]]
C
chengduoZH 已提交
192
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207


class TestSeqProjectCase2(TestSeqProject):
    def init_test_case(self):
        self.input_row = 25
        self.context_start = 2
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
        idx = range(self.input_size[0])
        del idx[0]
        self.lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
                    [self.input_size[0]]]
C
chengduoZH 已提交
208
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
209 210 211 212


if __name__ == '__main__':
    unittest.main()