prune_for_jetson.py 6.9 KB
Newer Older
S
Shang Zhizhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script simply removes all grad ops and kernels. You should use this script 
when cmake ON_INFER=ON, which can greatly reduce the volume of the prediction library.
"""

import os
import sys
import re
import glob
import io


def find_type_files(cur_dir, file_type, file_list=[]):
    next_level_dirs = os.listdir(cur_dir)
    for next_level_name in next_level_dirs:
        next_level_dir = os.path.join(cur_dir, next_level_name)
        if os.path.isfile(next_level_dir):
            if os.path.splitext(next_level_dir)[1] == file_type:
                file_list.append(next_level_dir)
        elif os.path.isdir(next_level_dir):
            find_type_files(next_level_dir, file_type, file_list)
    return file_list


def find_kernel(content, pattern):
    res = re.findall(pattern, content, flags=re.DOTALL)
    ret = []
    for p in res:
        left, right = 0, 0
        for c in p:
            if c == '{':
                left += 1
            elif c == '}':
                right += 1

        if left == right:
            ret.append(p)

    return ret, len(ret)


def prune_phi_kernels():
    tool_dir = os.path.dirname(os.path.abspath(__file__))
    if sys.version_info[0] == 3:
        all_op = glob.glob(
            os.path.join(tool_dir, '../paddle/phi/kernels/**/*.cc'),
            recursive=True)
        all_op += glob.glob(
            os.path.join(tool_dir, '../paddle/phi/kernels/**/*.cu'),
            recursive=True)
    elif sys.version_info[0] == 2:
        all_op = find_type_files(
            os.path.join(tool_dir, '../paddle/phi/kernels/'), '.cc')
        all_op = find_type_files(
            os.path.join(tool_dir, '../paddle/phi/kernels/'), '.cu', all_op)

    register_op_count = 0
    for op_file in all_op:
        need_continue = False
        file_blacklist = [
            "kernels/empty_kernel.cc", "/cast_kernel.c", "/batch_norm_kernel.c"
        ]
        for bname in file_blacklist:
            if op_file.find(bname) >= 0:
                need_continue = True
                break

        if need_continue:
            print("continue:", op_file)
            continue

        op_name = os.path.split(op_file)[1]
        all_matches = []
        with io.open(op_file, 'r', encoding='utf-8') as f:
            content = ''.join(f.readlines())
            op_pattern = 'PD_REGISTER_KERNEL\(.*?\).*?\{.*?\}'
            op, op_count = find_kernel(content, op_pattern)
            register_op_count += op_count
            all_matches.extend(op)

        for p in all_matches:
            content = content.replace(p, '')

        with io.open(op_file, 'w', encoding='utf-8') as f:
            f.write(u'{}'.format(content))

    print('We erase all grad op and kernel for Paddle-Inference lib.')
    print('%50s%10s' % ('type', 'count'))
    print('%50s%10s' % ('REGISTER_OPERATOR', register_op_count))
    return True


def apply_patches():
    work_path = os.path.dirname(os.path.abspath(__file__)) + "/../"
    ret = os.system(
        "cd %s && rm -f paddle/fluid/inference/api/tensorrt_predictor.* "
        " && rm -f paddle/fluid/inference/api/paddle_tensorrt_predictor.h "
        " && git apply tools/infer_prune_patches/*.patch && cd -" % work_path)
    return ret == 0


def append_fluid_kernels():
    op_white_list = ["load", "load_combine"]

    #1. add to makefile
    file_name = os.path.dirname(os.path.abspath(__file__)) \
                  + "/../paddle/fluid/inference/tensorrt/CMakeLists.txt"
    append_str = "\nfile(APPEND ${pybind_file} \"USE_NO_KERNEL_OP__(tensorrt_engine);\\n\")\n"
    for op in op_white_list:
        append_str = append_str + "file(APPEND ${pybind_file} \"USE_OP__(%s);\\n\")\n" % op

    with io.open(file_name, 'r', encoding='utf-8') as f:
        content = ''.join(f.readlines())

    location_str = "nv_library(tensorrt_op_teller SRCS op_teller.cc DEPS framework_proto device_context boost)"
    new_content = content.replace(location_str, location_str + append_str)

    if new_content == content:
        print("ERROR: can not find \"%s\" in file \"%s\"" %
              (location_str, file_name))
        return False

    with io.open(file_name, 'w', encoding='utf-8') as f:
        f.write(u'{}'.format(new_content))

    #2. add op and kernel register
    op_white_list.append("tensorrt_engine")
    tool_dir = os.path.dirname(os.path.abspath(__file__))
    if sys.version_info[0] == 3:
        all_op = glob.glob(
            os.path.join(tool_dir, '../paddle/fluid/operators/**/*.cc'),
            recursive=True)
        all_op += glob.glob(
            os.path.join(tool_dir, '../paddle/fluid/operators/**/*.cu'),
            recursive=True)
    elif sys.version_info[0] == 2:
        all_op = find_type_files(
            os.path.join(tool_dir, '../paddle/fluid/operators/'), '.cc')
        all_op = find_type_files(
            os.path.join(tool_dir, '../paddle/fluid/operators/'), '.cu', all_op)

    for op_file in all_op:
        with io.open(op_file, 'r', encoding='utf-8') as f:
            content = ''.join(f.readlines())

        for op in op_white_list:
            patterns = {
                "REGISTER_OPERATOR": "REGISTER_OPERATOR\(\s*%s\s*," % op,
                "REGISTER_OP_CPU_KERNEL":
                "REGISTER_OP_CPU_KERNEL\(\s*%s\s*," % op,
                "REGISTER_OP_CUDA_KERNEL":
                "REGISTER_OP_CUDA_KERNEL\(\s*%s\s*," % op
            }
            for k, p in patterns.items():
                matches = re.findall(p, content, flags=re.DOTALL)
                if len(matches) > 0:
                    content = content.replace(matches[0],
                                              matches[0].replace(k, k + "__"))
                    with io.open(op_file, 'w', encoding='utf-8') as f:
                        f.write(u'{}'.format(content))

    return True


if __name__ == '__main__':

    print("================ step 1: apply patches =======================")
    assert (apply_patches())
    print("==============================================================\n")

    print("================ step 2: append fluid op/kernels==============")
    assert (append_fluid_kernels())
    print("==============================================================\n")

    print("================ step 3:prune phi kernels ====================")
    assert (prune_phi_kernels())
    print("==============================================================\n")