test_eigh_op.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
from op_test import OpTest
from gradient_checker import grad_check


class TestEighOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.op_type = "eigh"
        self.init_input()
        self.init_config()
        np.random.seed(123)
        out_w, out_v = np.linalg.eigh(self.x_np, self.UPLO)
        self.inputs = {"X": self.x_np}
        self.attrs = {"UPLO": self.UPLO}
        self.outputs = {'Eigenvalues': out_w, "Eigenvectors": out_v}

    def init_config(self):
        self.UPLO = 'L'

    def init_input(self):
        self.x_shape = (10, 10)
        self.x_type = np.float64
        self.x_np = np.random.random(self.x_shape).astype(self.x_type)

    def test_check_output(self):
        self.check_output(no_check_set=['Eigenvectors'])

    def test_grad(self):
        self.check_grad(["X"], ["Eigenvalues"])


class TestEighUPLOCase(TestEighOp):
    def init_config(self):
        self.UPLO = 'U'


class TestEighGPUCase(unittest.TestCase):
    def setUp(self):
        self.x_shape = [32, 32]
        self.dtype = "float32"
        np.random.seed(123)
        self.x_np = np.random.random(self.x_shape).astype(self.dtype)
C
crystal 已提交
62 63 64 65 66 67
        if (paddle.version.cuda() >= "11.6"):
            self.rtol = 5e-6
            self.atol = 6e-5
        else:
            self.rtol = 1e-5
            self.atol = 1e-5
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    def test_check_output_gpu(self):
        if paddle.is_compiled_with_cuda():
            paddle.disable_static(place=paddle.CUDAPlace(0))
            input_real_data = paddle.to_tensor(self.x_np)
            expected_w, expected_v = np.linalg.eigh(self.x_np)
            actual_w, actual_v = paddle.linalg.eigh(input_real_data)
            np.testing.assert_allclose(
                actual_w, expected_w, rtol=self.rtol, atol=self.atol)
            np.testing.assert_allclose(
                abs(actual_v.numpy()),
                abs(expected_v),
                rtol=self.rtol,
                atol=self.atol)


class TestEighAPI(unittest.TestCase):
    def setUp(self):
C
crystal 已提交
86
        self.init_input_data()
87
        self.UPLO = 'L'
C
crystal 已提交
88 89 90 91 92 93
        if (paddle.version.cuda() >= "11.6"):
            self.rtol = 5e-6
            self.atol = 6e-5
        else:
            self.rtol = 1e-5
            self.atol = 1e-5
94 95 96
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        np.random.seed(123)
C
crystal 已提交
97 98 99 100

    def init_input_data(self):
        self.x_shape = [5, 5]
        self.dtype = "float32"
101
        self.real_data = np.random.random(self.x_shape).astype(self.dtype)
C
crystal 已提交
102
        complex_data = np.random.random(self.x_shape).astype(
103 104 105 106
            self.dtype) + 1J * np.random.random(self.x_shape).astype(self.dtype)
        self.trans_dims = list(range(len(self.x_shape) - 2)) + [
            len(self.x_shape) - 1, len(self.x_shape) - 2
        ]
C
crystal 已提交
107 108 109
        #build a random conjugate matrix
        self.complex_symm = np.divide(
            complex_data + np.conj(complex_data.transpose(self.trans_dims)), 2)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

    def compare_result(self, actual_w, actual_v, expected_w, expected_v):
        np.testing.assert_allclose(
            actual_w, expected_w, rtol=self.rtol, atol=self.atol)
        np.testing.assert_allclose(
            abs(actual_v), abs(expected_v), rtol=self.rtol, atol=self.atol)

    def check_static_float_result(self):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            input_x = paddle.static.data(
                'input_x', shape=self.x_shape, dtype=self.dtype)
            output_w, output_v = paddle.linalg.eigh(input_x)
            exe = paddle.static.Executor(self.place)
            expected_w, expected_v = exe.run(main_prog,
                                             feed={"input_x": self.real_data},
                                             fetch_list=[output_w, output_v])

            actual_w, actual_v = np.linalg.eigh(self.real_data)
            self.compare_result(actual_w, actual_v, expected_w, expected_v)

    def check_static_complex_result(self):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            x_dtype = np.complex64 if self.dtype == "float32" else np.complex128
            input_x = paddle.static.data(
                'input_x', shape=self.x_shape, dtype=x_dtype)
            output_w, output_v = paddle.linalg.eigh(input_x)
            exe = paddle.static.Executor(self.place)
            expected_w, expected_v = exe.run(
                main_prog,
C
crystal 已提交
143
                feed={"input_x": self.complex_symm},
144
                fetch_list=[output_w, output_v])
C
crystal 已提交
145
            actual_w, actual_v = np.linalg.eigh(self.complex_symm)
146 147 148 149 150 151 152 153
            self.compare_result(actual_w, actual_v, expected_w, expected_v)

    def test_in_static_mode(self):
        paddle.enable_static()
        self.check_static_float_result()
        self.check_static_complex_result()

    def test_in_dynamic_mode(self):
154
        paddle.disable_static()
155 156 157 158 159
        input_real_data = paddle.to_tensor(self.real_data)
        expected_w, expected_v = np.linalg.eigh(self.real_data)
        actual_w, actual_v = paddle.linalg.eigh(input_real_data)
        self.compare_result(actual_w, actual_v.numpy(), expected_w, expected_v)

C
crystal 已提交
160 161
        input_complex_data = paddle.to_tensor(self.complex_symm)
        expected_w, expected_v = np.linalg.eigh(self.complex_symm)
162 163 164 165
        actual_w, actual_v = paddle.linalg.eigh(input_complex_data)
        self.compare_result(actual_w, actual_v.numpy(), expected_w, expected_v)

    def test_eigh_grad(self):
166
        paddle.disable_static()
C
crystal 已提交
167
        x = paddle.to_tensor(self.complex_symm, stop_gradient=False)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        w, v = paddle.linalg.eigh(x)
        (w.sum() + paddle.abs(v).sum()).backward()
        np.testing.assert_allclose(
            abs(x.grad.numpy()),
            abs(x.grad.numpy().conj().transpose(self.trans_dims)),
            rtol=self.rtol,
            atol=self.atol)


class TestEighBatchAPI(TestEighAPI):
    def init_input_shape(self):
        self.x_shape = [2, 5, 5]


class TestEighAPIError(unittest.TestCase):
    def test_error(self):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            #input maxtrix must greater than 2 dimensions
            input_x = paddle.static.data(
                name='x_1', shape=[12], dtype='float32')
            self.assertRaises(ValueError, paddle.linalg.eigh, input_x)

            #input matrix must be square matrix
            input_x = paddle.static.data(
                name='x_2', shape=[12, 32], dtype='float32')
            self.assertRaises(ValueError, paddle.linalg.eigh, input_x)

            #uplo must be in 'L' or 'U'
            input_x = paddle.static.data(
                name='x_3', shape=[4, 4], dtype="float32")
            uplo = 'R'
            self.assertRaises(ValueError, paddle.linalg.eigh, input_x, uplo)

            #x_data cannot be integer
            input_x = paddle.static.data(
                name='x_4', shape=[4, 4], dtype="int32")
            self.assertRaises(TypeError, paddle.linalg.eigh, input_x)


if __name__ == "__main__":
    unittest.main()