README.html 24.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: Distributed Training &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
78
          <li><a href="/">Home</a></li>
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_cn.html">Ubuntu部署PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/concepts/use_concepts_cn.html">基本使用概念</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design Doc: Distributed Training</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-distributed-training">
<span id="design-doc-distributed-training"></span><h1>Design Doc: Distributed Training<a class="headerlink" href="#design-doc-distributed-training" title="永久链接至标题"></a></h1>
<div class="section" id="objective">
<span id="objective"></span><h2>Objective<a class="headerlink" href="#objective" title="永久链接至标题"></a></h2>
<p>In <a class="reference external" href="https://www.slideshare.net/cxwangyi/paddlepaddle-a-complete-solution-for-businesses">this slides</a>, we explained that we&#8217;d like PaddlePaddle running on general-purpose clusters like those managed by Kubernetes, so to address demands for AI from both Internet and non-Internet industries.</p>
<p>This poses technical challenges to PaddlePaddle:</p>
<ol class="simple">
<li>Support fault-recovery.</li>
<li>Support both offline and online training.</li>
<li><a class="reference external" href="https://en.wikipedia.org/wiki/Serverless_computing">Serverless computing</a> of distributed training.</li>
</ol>
</div>
<div class="section" id="training-job">
<span id="training-job"></span><h2>Training Job<a class="headerlink" href="#training-job" title="永久链接至标题"></a></h2>
<p>A training job will be created once user asks Paddle cloud to train a model. The training job is made up of different processes that collaboratively consume data and produce a trained model. There are three kinds of processes:</p>
<ol class="simple">
<li>the <em>master process</em>, which dispatches tasks to</li>
<li>one or more <em>trainer processes</em>, which run distributed training and synchronize gradients/models via</li>
203
<li>one or more <em>parameter server processes</em>, where each holds a shard of the global model, and receive the uploaded gradients from every <em>trainer process</em>, so they can run the optimize functions to update their parameters.</li>
204 205 206
</ol>
<p>Their relation is illustrated in the following graph:</p>
<p><img src="src/paddle-model-sharding.png"/></p>
207 208
<p>By coordinating these processes, PaddlePaddle supports use both Synchronize Stochastic Gradient Descent (sync SGD) and Asynchronous Stochastic Gradient Descent (async SGD) to train user-defined neural network topologies.</p>
<p>When training with sync SGD, parameter servers wait for all trainers to finish gradients update and then send the updated parameters to trainers, training can not proceed until the trainer received the updated parameters. This creates a synchronization point between trainers. When training with async SGD, each trainer upload gradient and download new parameters individually, without the synchronization with other trainers. Using asyc SGD will be faster in terms of time per pass, but have more noise in gradient since trainers are likely to have a stale model.</p>
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
<div class="section" id="master-process">
<span id="master-process"></span><h3>Master Process<a class="headerlink" href="#master-process" title="永久链接至标题"></a></h3>
<p>The master process will:</p>
<ul class="simple">
<li>Partition a dataset into <a class="reference external" href="#task">tasks</a> and dispatch tasks to trainers.</li>
<li>Keep track of training progress on the dataset with <a class="reference external" href="#task-queue">task queue</a>. A training job will iterate on the dataset for a full pass until it goes into next pass.</li>
</ul>
<div class="section" id="task">
<span id="task"></span><h4>Task<a class="headerlink" href="#task" title="永久链接至标题"></a></h4>
<p>A task is a data shard to be trained. The total number of tasks will be much bigger than the total number of trainers. The number of data instances inside a task will be much bigger than the mini-batch size.</p>
</div>
<div class="section" id="task-queue">
<span id="task-queue"></span><h4>Task Queue<a class="headerlink" href="#task-queue" title="永久链接至标题"></a></h4>
<p>The master process has three task queues to track training progress. As illustrated in the graph below, Job A and Job B both have one master process. Each master process has three task queues.</p>
<p><img src="src/paddle-task-queues.png"/></p>
<ul class="simple">
<li>The todo queue holds tasks to be dispatched. When a job starts, the master process fills in the todo queue with all tasks.</li>
<li>The pending queue holds tasks that are currently training by trainers.</li>
<li>the done queue holds tasks that are already trained.</li>
</ul>
<p>The life cycle of a single task is illustrated below:</p>
<p><img src="src/paddle-task-states.png"/></p>
<ol class="simple">
<li>When a new pass of training starts, all tasks will be placed in the todo queue.</li>
<li>The master process will dispatch few tasks to each trainer at a time, puts them in the pending queue and waits for completion.</li>
<li>The trainer will work on its tasks and tell the master process once a task is completed. The master process will dispatch a new task to that trainer.</li>
<li>If a task timeout. the master process will move it back to the todo queue. The timeout count will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, so it will be discarded.</li>
<li>The master process will move completed task to the done queue. When the todo queue is empty, the master process will start a new pass by moving all tasks in the done queue to todo queue and reset the timeout counter of all tasks to zero.</li>
</ol>
</div>
</div>
<div class="section" id="trainer-process">
<span id="trainer-process"></span><h3>Trainer Process<a class="headerlink" href="#trainer-process" title="永久链接至标题"></a></h3>
<p>The trainer process will:</p>
<ul class="simple">
<li>Receive tasks from the master.</li>
<li>Work on the tasks: calculate and upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers.</li>
</ul>
</div>
<div class="section" id="parameter-server-process">
<span id="parameter-server-process"></span><h3>Parameter Server Process<a class="headerlink" href="#parameter-server-process" title="永久链接至标题"></a></h3>
<p>Parameter server processes hold the parameters collaboratively. The parameters are partitioned on different parameter servers.</p>
<p>The parameter server will:</p>
<ul class="simple">
<li>Receive gradient from the trainers, update its parameters, and give the trainers the latest parameters.</li>
<li>Periodically save its parameters to distributed file system by overriding the previous save.</li>
</ul>
</div>
<div class="section" id="optimization-algorithms">
<span id="optimization-algorithms"></span><h3>Optimization Algorithms<a class="headerlink" href="#optimization-algorithms" title="永久链接至标题"></a></h3>
<p>The communication pattern between the trainers and the parameter servers depends on the category of optimization algorithm:</p>
<ul>
<li><p class="first">Synchronous Stochastic Gradient Descent (sync-SGD)</p>
<p>Parameter server will wait for all trainer finish n-th mini-batch calculation and send their gradients before broadcasting new parameters to every trainer. Every trainer will wait for the new parameters before starting n+1-th mini-batch.</p>
</li>
<li><p class="first">Asynchronous Stochastic Gradient Descent (async-SGD)</p>
<p>There will no synchronization between different trainers, and parameter server updates its parameter as soon as it receives new gradient:</p>
<ul class="simple">
<li>Each trainer uploads its accumulated gradient every n mini-batches.</li>
<li>Every m mini-batches, the trainer downloads new parameters from parameter server.</li>
<li>n and m do not have to be equal.</li>
</ul>
</li>
</ul>
</div>
</div>
<div class="section" id="fault-tolerant">
<span id="fault-tolerant"></span><h2>Fault Tolerant<a class="headerlink" href="#fault-tolerant" title="永久链接至标题"></a></h2>
<p>The training job will pause if the master processes is dead, or any of the parameter server process is dead. They will be started by <a class="reference external" href="https://kubernetes.io/">Kubernetes</a> and recover in few minutes. Please refer to <a class="reference external" href="#fault-recovery">fault recovery</a>.</p>
<p>The training job will continue to make progress if there is at least one training process running. The strategy depends on the type of optimization algorithm:</p>
<ul>
<li><p class="first">sync-SGD</p>
<p>TODO</p>
</li>
<li><p class="first">async-SGD</p>
<p>Since async-SGD does not require synchronization between mini-batches, the system will by definition make process if at least one trainer is running.</p>
</li>
</ul>
</div>
<div class="section" id="fault-recovery">
<span id="fault-recovery"></span><h2>Fault Recovery<a class="headerlink" href="#fault-recovery" title="永久链接至标题"></a></h2>
<p>PaddlePaddle uses <a class="reference external" href="https://github.com/coreos/etcd">etcd</a> to keep track of the states of processes. Because etcd is a distributed reliable key-value store, the restarted process can recover its states from etcd. The model parameters are periodically saved into distributed file system, so a restarted parameter server can recover its parameters from the saved file.</p>
<p>Now we will introduce how each process recovers from a failure, the graph below shows how etcd is used:</p>
<p><img src="src/paddle-etcd.png"/></p>
<div class="section" id="master-process">
<span id="id1"></span><h3>Master Process<a class="headerlink" href="#master-process" title="永久链接至标题"></a></h3>
<p>When the master is started by the Kubernetes, it executes the following steps at startup:</p>
<ol class="simple">
<li>Grabs a unique <em>master</em> lock in etcd, which prevents concurrent master instantiations.</li>
<li>Recovers the task queues from etcd if they already exist, otherwise, the master will create them.</li>
<li>Watches the trainer prefix keys <code class="docutils literal"><span class="pre">/trainer/</span></code> on etcd to find the live trainers.</li>
<li>Starts dispatching the tasks to the trainers, and updates task queue using an etcd transaction to ensure lock is held during the update.</li>
</ol>
<p>When the master process is dead for any reason, Kubernetes will restart it. It will be online again with all states recovered from etcd in few minutes.</p>
</div>
<div class="section" id="trainer-process">
<span id="id2"></span><h3>Trainer Process<a class="headerlink" href="#trainer-process" title="永久链接至标题"></a></h3>
<p>When the trainer is started by the Kubernetes, it executes the following steps at startup:</p>
<ol class="simple">
<li>Watches the available parameter server prefix keys <code class="docutils literal"><span class="pre">/ps/</span></code> on etcd and waits until the count of parameter servers reaches the desired count.</li>
<li>Generates a unique ID, and sets key <code class="docutils literal"><span class="pre">/trainer/&lt;unique</span> <span class="pre">ID&gt;</span></code> with its contact address as value. The key will be deleted when the lease expires, so the master will be aware of the trainer being online and offline.</li>
<li>Waits for tasks from the master to start training.</li>
</ol>
<p>If trainer&#8217;s etcd lease expires, it will try set key <code class="docutils literal"><span class="pre">/trainer/&lt;unique</span> <span class="pre">ID&gt;</span></code> again so that the master process can discover the trainer again.</p>
313
<p>When a trainer fails, Kuberentes would try to restart it. The recovered trainer would fetch tasks from the TODO queue and go on training.</p>
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
</div>
<div class="section" id="parameter-server-process">
<span id="id3"></span><h3>Parameter Server Process<a class="headerlink" href="#parameter-server-process" title="永久链接至标题"></a></h3>
<p>When the parameter server is started by Kubernetes, it executes the following steps at startup:</p>
<ol>
<li><p class="first">Read desired total number of parameter servers from etcd <code class="docutils literal"><span class="pre">/ps_desired</span></code></p>
</li>
<li><p class="first">Search through etcd keys <code class="docutils literal"><span class="pre">/ps/&lt;index&gt;</span></code> (<code class="docutils literal"><span class="pre">/ps/0</span></code>, <code class="docutils literal"><span class="pre">/ps/1</span></code>, ...) to find the first non-existant key whose index is smaller than the total number of parameter servers. Set the key using a transaction to avoid concurrent writes. The parameter server&#8217;s index is inferred from the key name.</p>
<p>The desired number of parameter servers is 3:</p>
<p><img src="src/paddle-ps-0.png"/></p>
<p>The third parameter server joined:</p>
<p><img src="src/paddle-ps-1.png"/></p>
</li>
<li><p class="first">The parameter server can load parameters if there are already saved parameters in the save path (inferred from its index).</p>
</li>
<li><p class="first">Now the parameter server is ready for the trainers&#8217; requests.</p>
</li>
</ol>
<p>If the parameter server&#8217;s etcd lease expires, the parameter server will kill itself.</p>
</div>
</div>
335 336 337 338 339 340 341 342
<div class="section" id="parameter-server-checkpointing">
<span id="parameter-server-checkpointing"></span><h2>Parameter Server Checkpointing<a class="headerlink" href="#parameter-server-checkpointing" title="永久链接至标题"></a></h2>
<p>See <a class="reference internal" href="checkpointing.html"><span class="doc">here</span></a></p>
</div>
<div class="section" id="store-and-dispatching-trainning-data">
<span id="store-and-dispatching-trainning-data"></span><h2>Store and dispatching trainning data<a class="headerlink" href="#store-and-dispatching-trainning-data" title="永久链接至标题"></a></h2>
<p>See <a class="reference internal" href="data_dispatch.html"><span class="doc">here</span></a></p>
</div>
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
<div class="section" id="dynamic-scaling">
<span id="dynamic-scaling"></span><h2>Dynamic Scaling<a class="headerlink" href="#dynamic-scaling" title="永久链接至标题"></a></h2>
<div class="section" id="trainer-scaling">
<span id="trainer-scaling"></span><h3>Trainer Scaling<a class="headerlink" href="#trainer-scaling" title="永久链接至标题"></a></h3>
<p>TODO</p>
</div>
<div class="section" id="parameter-server-scaling">
<span id="parameter-server-scaling"></span><h3>Parameter Server Scaling<a class="headerlink" href="#parameter-server-scaling" title="永久链接至标题"></a></h3>
<p>Not planned for v1.</p>
</div>
</div>
<div class="section" id="training-dataset-format">
<span id="training-dataset-format"></span><h2>Training Dataset Format<a class="headerlink" href="#training-dataset-format" title="永久链接至标题"></a></h2>
<p>TODO</p>
</div>
<div class="section" id="user-interface">
<span id="user-interface"></span><h2>User Interface<a class="headerlink" href="#user-interface" title="永久链接至标题"></a></h2>
<p>TODO</p>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
399 400
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>