maxouting.cc 3.9 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/maxouting.h"

namespace paddle {
namespace operators {
namespace math {

/*
 * All tensors are in NCHW format.
W
wanghaox 已提交
23
 * groups mustbe > 1
W
wanghaox 已提交
24
 */
W
wanghaox 已提交
25 26
template <typename T>
class MaxOutFunctor<platform::CPUPlace, T> {
W
wanghaox 已提交
27 28
 public:
  void operator()(const platform::DeviceContext& context,
W
wanghaox 已提交
29 30
                  const framework::Tensor& input,
                  framework::Tensor * output,
W
wanghaox 已提交
31
                  int groups) {
W
wanghaox 已提交
32 33 34
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
W
wanghaox 已提交
35
    const int output_channels = output->dims()[1];
W
wanghaox 已提交
36
    int fea_size = input_height * input_width;
W
wanghaox 已提交
37
    // c_size means the output size of each sample
W
wanghaox 已提交
38 39
    int c_size = fea_size * output_channels;
    const T* input_data = input.data<T>();
W
wanghaox 已提交
40
    T* output_data = output->mutable_data<T>(context.GetPlace());
W
wanghaox 已提交
41

W
wanghaox 已提交
42
    for (int i = 0; i < batch_size; ++i) {
W
wanghaox 已提交
43 44 45
      int new_bindex =  c_size * i;
      for (int c = 0; c < output_channels; ++c) {
        int new_cindex = fea_size * c;
W
wanghaox 已提交
46
        for (int f = 0; f < fea_size; ++f) {
W
wanghaox 已提交
47 48
          // T ele = maxout_process.initial();
          T ele = static_cast<T>(-FLT_MAX);
W
wanghaox 已提交
49
          for (int ph = 0; ph < groups; ++ph) {
W
wanghaox 已提交
50 51
            T x = input_data[(new_bindex + new_cindex) * groups
              + ph * fea_size + f];
W
wanghaox 已提交
52
            ele = ele > x ? ele : x;
W
wanghaox 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
          }
          output_data[(new_bindex+new_cindex+f)] = ele;
        }
      }
    }
  }
};



template <class T>
class MaxOutGradFunctor<platform::CPUPlace, T> {
public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
                  framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad,
W
wanghaox 已提交
71
                  int groups) {
W
wanghaox 已提交
72 73 74
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
W
wanghaox 已提交
75
    const int output_channels = output.dims()[1];
W
wanghaox 已提交
76 77 78 79 80 81
    int fea_size = input_height * input_width;
    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

W
wanghaox 已提交
82
    for (int i = 0; i < batch_size; ++i) {
W
wanghaox 已提交
83 84 85
      int blen = fea_size * output_channels * i;
      for (int c = 0; c < output_channels; ++c) {
        int clen = fea_size * c;
W
wanghaox 已提交
86
        for (int f = 0; f < fea_size; ++f) {
W
wanghaox 已提交
87 88
          int input_idx0 = (blen + clen) * groups + f;
          bool continue_match = true;
W
wanghaox 已提交
89
          int output_idx = blen + clen + f;
W
wanghaox 已提交
90 91
          for (int g = 0; g < groups && continue_match; ++g) {
              int input_idx = input_idx0 + fea_size * g;
W
wanghaox 已提交
92 93 94
              input_grad_data[input_idx] = 0;
              if (input_data[input_idx] == output_data[output_idx]) {
                input_grad_data[input_idx] += output_grad_data[output_idx];
W
wanghaox 已提交
95
                continue_match = false;
W
wanghaox 已提交
96 97 98 99 100 101 102 103 104 105
              }
          }
        }
      }
    }
  }
};

template class MaxOutGradFunctor<platform::CPUPlace, float>;
template class MaxOutGradFunctor<platform::CPUPlace, double>;
W
wanghaox 已提交
106 107
template class MaxOutFunctor<platform::CPUPlace, float>;
template class MaxOutFunctor<platform::CPUPlace, double>;
W
wanghaox 已提交
108 109 110 111

}  // namespace math
}  // namespace operators
}  // namespace paddle