generate_proposals_v2_op.cc 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/nms_util.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class GenerateProposalsV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Scores"), true,
        platform::errors::NotFound("Input(Scores) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("BboxDeltas"), true,
        platform::errors::NotFound("Input(BboxDeltas) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("ImShape"), true,
        platform::errors::NotFound("Input(ImShape) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Anchors"), true,
        platform::errors::NotFound("Input(Anchors) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Variances"), true,
        platform::errors::NotFound("Input(Variances) shouldn't be null."));

    ctx->SetOutputDim("RpnRois", {-1, 4});
    ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("RpnRois", std::max(ctx->GetLoDLevel("Scores"), 1));
      ctx->SetLoDLevel("RpnRoiProbs", std::max(ctx->GetLoDLevel("Scores"), 1));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Anchors"),
        ctx.device_context());
  }
};

template <typename T>
class GenerateProposalsV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *scores = context.Input<Tensor>("Scores");
    auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
    auto *im_shape = context.Input<Tensor>("ImShape");
    auto anchors = GET_DATA_SAFELY(context.Input<Tensor>("Anchors"), "Input",
                                   "Anchors", "GenerateProposals");
    auto variances = GET_DATA_SAFELY(context.Input<Tensor>("Variances"),
                                     "Input", "Variances", "GenerateProposals");

    auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
    auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");

    int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
    int post_nms_top_n = context.Attr<int>("post_nms_topN");
    float nms_thresh = context.Attr<float>("nms_thresh");
    float min_size = context.Attr<float>("min_size");
    float eta = context.Attr<float>("eta");

    auto &dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();

    auto &scores_dim = scores->dims();
    int64_t num = scores_dim[0];
    int64_t c_score = scores_dim[1];
    int64_t h_score = scores_dim[2];
    int64_t w_score = scores_dim[3];

    auto &bbox_dim = bbox_deltas->dims();
    int64_t c_bbox = bbox_dim[1];
    int64_t h_bbox = bbox_dim[2];
    int64_t w_bbox = bbox_dim[3];

    rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
                              context.GetPlace());
    rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());

    Tensor bbox_deltas_swap, scores_swap;
    bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
                                     dev_ctx.GetPlace());
    scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
                                dev_ctx.GetPlace());

    math::Transpose<platform::CPUDeviceContext, T, 4> trans;
    std::vector<int> axis = {0, 2, 3, 1};
    trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
    trans(dev_ctx, *scores, &scores_swap, axis);

    framework::LoD lod;
    lod.resize(1);
    auto &lod0 = lod[0];
    lod0.push_back(0);
    anchors.Resize({anchors.numel() / 4, 4});
    variances.Resize({variances.numel() / 4, 4});
    std::vector<int> tmp_num;

    int64_t num_proposals = 0;
    for (int64_t i = 0; i < num; ++i) {
      Tensor im_shape_slice = im_shape->Slice(i, i + 1);
      Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
      Tensor scores_slice = scores_swap.Slice(i, i + 1);

      bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
      scores_slice.Resize({h_score * w_score * c_score, 1});

      std::pair<Tensor, Tensor> tensor_pair =
          ProposalForOneImage(dev_ctx, im_shape_slice, anchors, variances,
                              bbox_deltas_slice, scores_slice, pre_nms_top_n,
                              post_nms_top_n, nms_thresh, min_size, eta);
      Tensor &proposals = tensor_pair.first;
      Tensor &scores = tensor_pair.second;

      AppendProposals(rpn_rois, 4 * num_proposals, proposals);
      AppendProposals(rpn_roi_probs, num_proposals, scores);
      num_proposals += proposals.dims()[0];
      lod0.push_back(num_proposals);
      tmp_num.push_back(proposals.dims()[0]);
    }
    if (context.HasOutput("RpnRoisNum")) {
      auto *rpn_rois_num = context.Output<Tensor>("RpnRoisNum");
      rpn_rois_num->mutable_data<int>({num}, context.GetPlace());
      int *num_data = rpn_rois_num->data<int>();
      for (int i = 0; i < num; i++) {
        num_data[i] = tmp_num[i];
      }
      rpn_rois_num->Resize({num});
    }
    rpn_rois->set_lod(lod);
    rpn_roi_probs->set_lod(lod);
    rpn_rois->Resize({num_proposals, 4});
    rpn_roi_probs->Resize({num_proposals, 1});
  }

  std::pair<Tensor, Tensor> ProposalForOneImage(
      const platform::CPUDeviceContext &ctx, const Tensor &im_shape_slice,
      const Tensor &anchors, const Tensor &variances,
      const Tensor &bbox_deltas_slice,  // [M, 4]
      const Tensor &scores_slice,       // [N, 1]
      int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
      float eta) const {
    auto *scores_data = scores_slice.data<T>();

    // Sort index
    Tensor index_t;
    index_t.Resize({scores_slice.numel()});
    int *index = index_t.mutable_data<int>(ctx.GetPlace());
    for (int i = 0; i < scores_slice.numel(); ++i) {
      index[i] = i;
    }
    auto compare = [scores_data](const int64_t &i, const int64_t &j) {
      return scores_data[i] > scores_data[j];
    };

    if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
      std::sort(index, index + scores_slice.numel(), compare);
    } else {
      std::nth_element(index, index + pre_nms_top_n,
                       index + scores_slice.numel(), compare);
      index_t.Resize({pre_nms_top_n});
    }

    Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
    scores_sel.mutable_data<T>({index_t.numel(), 1}, ctx.GetPlace());
    bbox_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    anchor_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    var_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());

    CPUGather<T>(ctx, scores_slice, index_t, &scores_sel);
    CPUGather<T>(ctx, bbox_deltas_slice, index_t, &bbox_sel);
    CPUGather<T>(ctx, anchors, index_t, &anchor_sel);
    CPUGather<T>(ctx, variances, index_t, &var_sel);

    Tensor proposals;
    proposals.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    BoxCoder<T>(ctx, &anchor_sel, &bbox_sel, &var_sel, &proposals);

    ClipTiledBoxes<T>(ctx, im_shape_slice, proposals, &proposals, false);

    Tensor keep;
    FilterBoxes<T>(ctx, &proposals, min_size, im_shape_slice, false, &keep);
    // Handle the case when there is no keep index left
    if (keep.numel() == 0) {
      math::SetConstant<platform::CPUDeviceContext, T> set_zero;
      bbox_sel.mutable_data<T>({1, 4}, ctx.GetPlace());
      set_zero(ctx, &bbox_sel, static_cast<T>(0));
      Tensor scores_filter;
      scores_filter.mutable_data<T>({1, 1}, ctx.GetPlace());
      set_zero(ctx, &scores_filter, static_cast<T>(0));
      return std::make_pair(bbox_sel, scores_filter);
    }

    Tensor scores_filter;
    bbox_sel.mutable_data<T>({keep.numel(), 4}, ctx.GetPlace());
    scores_filter.mutable_data<T>({keep.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, proposals, keep, &bbox_sel);
    CPUGather<T>(ctx, scores_sel, keep, &scores_filter);
    if (nms_thresh <= 0) {
      return std::make_pair(bbox_sel, scores_filter);
    }

    Tensor keep_nms = NMS<T>(ctx, &bbox_sel, &scores_filter, nms_thresh, eta);

    if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
      keep_nms.Resize({post_nms_top_n});
    }

    proposals.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
    scores_sel.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, bbox_sel, keep_nms, &proposals);
    CPUGather<T>(ctx, scores_filter, keep_nms, &scores_sel);

    return std::make_pair(proposals, scores_sel);
  }
};

class GenerateProposalsV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Scores",
             "(Tensor) The scores from conv is in shape (N, A, H, W), "
             "N is batch size, A is number of anchors, "
             "H and W are height and width of the feature map");
    AddInput("BboxDeltas",
             "(Tensor) Bounding box deltas from conv is in "
             "shape (N, 4*A, H, W).");
    AddInput("ImShape",
             "(Tensor) Image shape in shape (N, 2), "
             "in format (height, width)");
    AddInput("Anchors",
             "(Tensor) Bounding box anchors from anchor_generator_op "
             "is in shape (A, H, W, 4).");
    AddInput("Variances",
             "(Tensor) Bounding box variances with same shape as `Anchors`.");

    AddOutput("RpnRois",
              "(LoDTensor), Output proposals with shape (rois_num, 4).");
    AddOutput("RpnRoiProbs",
              "(LoDTensor) Scores of proposals with shape (rois_num, 1).");
    AddOutput("RpnRoisNum", "(Tensor), The number of Rpn RoIs in each image")
        .AsDispensable();
    AddAttr<int>("pre_nms_topN",
                 "Number of top scoring RPN proposals to keep before "
                 "applying NMS.");
    AddAttr<int>("post_nms_topN",
                 "Number of top scoring RPN proposals to keep after "
                 "applying NMS");
    AddAttr<float>("nms_thresh", "NMS threshold used on RPN proposals.");
    AddAttr<float>("min_size",
                   "Proposal height and width both need to be greater "
                   "than this min_size.");
    AddAttr<float>("eta", "The parameter for adaptive NMS.");
    AddComment(R"DOC(
This operator is the second version of generate_proposals op to generate 
bounding box proposals for Faster RCNN.
The proposals are generated for a list of images based on image
score 'Scores', bounding box regression result 'BboxDeltas' as
well as predefined bounding box shapes 'anchors'. Greedy
non-maximum suppression is applied to generate the final bounding
boxes.

The difference between this version and the first version is that the image
 scale is no long needed now, so the input requires im_shape instead of im_info.
The change aims to unify the input for all kinds of objective detection 
such as YOLO-v3 and Faster R-CNN. As a result, the min_size represents the 
size on input image instead of original image which is slightly different 
to before and will not effect the result.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(
    generate_proposals_v2, ops::GenerateProposalsV2Op,
    ops::GenerateProposalsV2OpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(generate_proposals_v2,
                       ops::GenerateProposalsV2Kernel<float>,
                       ops::GenerateProposalsV2Kernel<double>);