cvm_op.cc 6.6 KB
Newer Older
H
heqiaozhi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/cvm_op.h"
H
heqiaozhi 已提交
16
#include <memory>
H
heqiaozhi 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class CVMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("CVM"), "Input(CVM) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
    auto cvm_dims = ctx->GetInputDim("CVM");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(cvm_dims.size(), 2UL, "Input(CVM)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(cvm_dims[1], 2UL,
                      "The 2nd dimension of "
                      "Input(CVM) should be 2.");

    if (ctx->Attrs().Get<bool>("use_cvm")) {
      ctx->SetOutputDim("Y", {x_dims[0], x_dims[1]});
    } else {
      ctx->SetOutputDim("Y", {x_dims[0], x_dims[1] - 2});
    }
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // cvm
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }
};

class CVMGradientOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("CVM"), "Input(CVM) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
    auto cvm_dims = ctx->GetInputDim("CVM");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(cvm_dims.size(), 2, "Input(CVM)'s rank should be 2.");

    PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0],
                      "The 1st dimension of Input(X) and Input(Y@Grad) should "
                      "be equal.");

    PADDLE_ENFORCE_EQ(cvm_dims[1], 2,
                      "When Attr(soft_label) == false, the 2nd dimension of "
                      "Input(CVM) should be 2.");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // cvm
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }
};

class CVMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
             "[N x D],"
             " where N is the batch size and D is the emebdding dim. ");
    AddInput("CVM",
             "(Tensor),  a 2-D Tensor with shape [N x 2], where N is the batch "
             "size, 2 is show and click.");
    AddOutput("Y",
              "(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
              "[N x K].");
    AddAttr<bool>("use_cvm", "bool, use cvm or not").SetDefault(true);
    AddComment(R"DOC(
CVM Operator.
H
add doc  
heqiaozhi 已提交
117

H
add doc  
heqiaozhi 已提交
118 119 120
      We assume that input is a embedding vector with cvm_feature(show and click), which shape is [N * D] (D is 2(cvm_feature) + embedding dim, N is batch_size)
      if use_cvm is True, we will log(cvm_feature), and output shape is [N * D].
      if use_cvm is False, we will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
121

H
add doc  
heqiaozhi 已提交
122
  Example:
H
heqiaozhi 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
          input = fluid.layers.data(name=\"input\", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype=\"int64\")
          label = fluid.layers.data(name=\"label\", shape=[-1, 1], append_batch_size=False, dtype=\"int64\")

          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')

          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype=\"int64\", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True

          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)

)DOC");
  }
};
H
heqiaozhi 已提交
140

H
heqiaozhi 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
class CVMGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("cvm_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("CVM", Input("CVM"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("CVM"), InputGrad("CVM"));
    op->SetAttrMap(Attrs());
    return op;
  }
};
H
heqiaozhi 已提交
158

H
heqiaozhi 已提交
159 160 161 162 163 164 165 166 167 168 169 170
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(cvm, ops::CVMOp, ops::CVMOpMaker, ops::CVMGradOpDescMaker);

REGISTER_OPERATOR(cvm_grad, ops::CVMGradientOp);

REGISTER_OP_CPU_KERNEL(cvm, ops::CVMOpKernel<float>, ops::CVMOpKernel<double>);

REGISTER_OP_CPU_KERNEL(cvm_grad, ops::CVMGradOpKernel<float>,
                       ops::CVMGradOpKernel<double>);