nccl_op.cu 5.6 KB
Newer Older
D
Dong Zhihong 已提交
1 2 3 4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
Dong Zhihong 已提交
5 6
http://www.apache.org/licenseshashernless required by applicable law or agreed
to in writing, software
D
Dong Zhihong 已提交
7 8 9 10 11 12
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
D
Dong Zhihong 已提交
13 14
#include <functional>

D
Dong Zhihong 已提交
15
#include "paddle/framework/lod_tensor.h"
16 17
#include "paddle/framework/op_registry.h"
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
18 19 20 21

namespace paddle {
namespace operators {

22 23
using framework::Tensor;
using platform::Communicator;
D
Dong Zhihong 已提交
24
using framework::LoDTensor;
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

template <typename Type>
class NCCLTypeWrapper;

template <>
class NCCLTypeWrapper<float> {
 public:
  static const ncclDataType_t type = ncclFloat;
};

template <>
class NCCLTypeWrapper<double> {
 public:
  static const ncclDataType_t type = ncclDouble;
};

D
Dong Zhihong 已提交
41 42 43 44 45 46 47
template <typename T>
class NCCLAllReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

D
Dong Zhihong 已提交
48 49
    auto ins = ctx.MultiInput<LoDTensor>("X");
    auto outs = ctx.MultiOutput<LoDTensor>("Out");
D
Dong Zhihong 已提交
50 51 52 53 54 55 56 57 58 59 60

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);

D
Dong Zhihong 已提交
61 62 63 64 65 66
    size_t N = ins.size();
    for (size_t i = 0; i < N; ++i) {
      VLOG(1) << " inference (X) " << framework::product(ins[i]->dims())
              << " (Out)" << framework::product(outs[i]->dims());
    }

D
Dong Zhihong 已提交
67
    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
68 69 70
      VLOG(1) << " invoke allreduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();

D
Dong Zhihong 已提交
71
      PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
D
Dong Zhihong 已提交
72
          ins[i]->data<T>(), outs[i]->mutable_data<T>(ctx.GetPlace()),
D
Dong Zhihong 已提交
73
          outs[i]->numel(), NCCLTypeWrapper<T>::type, ncclSum,
D
Dong Zhihong 已提交
74 75
          comm->comms_[idx], stream));
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
D
Dong Zhihong 已提交
76 77 78

      VLOG(1) << " finished allreduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();
D
Dong Zhihong 已提交
79 80 81 82
    }
  }
};

D
Dong Zhihong 已提交
83 84 85 86 87 88 89
template <typename T>
class NCCLReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

D
Dong Zhihong 已提交
90
    auto ins = ctx.MultiInput<Tensor>("X");  // x0, x1, x2
D
Dong Zhihong 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    auto outs = ctx.MultiOutput<Tensor>("Out");

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);

D
Dong Zhihong 已提交
103 104
    auto ins_names = ctx.Inputs("X");
    std::hash<std::string> hasher;
D
Dong Zhihong 已提交
105
    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
106
      int root = hasher(ins_names[i]) % comm->comms_.size();
D
Dong Zhihong 已提交
107 108 109 110
      T* recvbuffer = nullptr;
      if (root == device_id) {
        recvbuffer = outs[i]->mutable_data<T>(ctx.GetPlace());
      }
D
Dong Zhihong 已提交
111 112 113
      PADDLE_ENFORCE(platform::dynload::ncclReduce(
          ins[i]->data<T>(), recvbuffer, ins[i]->numel(),
          NCCLTypeWrapper<T>::type, ncclSum, root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
    }
  }
};

template <typename T>
class NCCLBcastKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

    int root = ctx.Attr<int>("root");

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);
    if (idx == root) {
      auto ins = ctx.MultiInput<Tensor>("X");
      for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
140 141 142
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            (void*)ins[i]->data<T>(), ins[i]->numel(), NCCLTypeWrapper<T>::type,
            root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
143 144 145 146 147
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      }
    } else {
      auto outs = ctx.MultiOutput<Tensor>("Out");
      for (size_t i = 0; i < outs.size(); ++i) {
D
Dong Zhihong 已提交
148 149 150
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            outs[i]->mutable_data<T>(ctx.GetPlace()), outs[i]->numel(),
            NCCLTypeWrapper<T>::type, root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
151 152 153 154 155 156
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      }
    }
  }
};

D
Dong Zhihong 已提交
157 158 159 160 161
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel<float>);
D
Dong Zhihong 已提交
162 163 164
REGISTER_OP_GPU_KERNEL(ncclBcastSend, ops::NCCLBcastKernel<float>);
REGISTER_OP_GPU_KERNEL(ncclReduce, ops::NCCLReduceKernel<float>);
REGISTER_OP_GPU_KERNEL(ncclBcastRecv, ops::NCCLBcastKernel<float>);