layer_helper_base.py 19.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import numpy as np

J
Jiabin Yang 已提交
18
from .framework import Variable, default_main_program, default_startup_program, _non_static_mode, _current_expected_place, _in_eager_without_dygraph_check
19 20 21
from . import unique_name
from .param_attr import ParamAttr, WeightNormParamAttr
from . import core
22
from .initializer import _global_weight_initializer, _global_bias_initializer
23

24 25
__all__ = ['LayerHelperBase']

26 27

class LayerHelperBase(object):
28 29 30
    # global dtype
    __dtype = "float32"

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    def __init__(self, name, layer_type):
        self._layer_type = layer_type
        self._name = name

    @property
    def name(self):
        return self._name

    @property
    def layer_type(self):
        return self._layer_type

    @property
    def main_program(self):
        return default_main_program()

    @property
    def startup_program(self):
        return default_startup_program()

51 52 53 54 55 56 57 58
    @classmethod
    def set_default_dtype(cls, dtype):
        cls.__dtype = dtype

    @classmethod
    def get_default_dtype(cls):
        return cls.__dtype

59
    def to_variable(self, value, name=None):
60
        r"""
61 62 63 64 65 66 67 68 69 70
        The API will create a ``Variable`` object from numpy\.ndarray or Variable object.

        Parameters:
            value(ndarray): The numpy\.ndarray object that needs to be converted, it can be multi-dimension, and the data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16}.
            name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

        Returns:
            Variable: ``Tensor`` created from the specified numpy\.ndarray object, data type and shape is the same as ``value`` .

        Examples:
71

72 73 74 75 76 77 78 79
         .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            with fluid.dygraph.guard():
                x = np.ones([2, 2], np.float32)
                y = fluid.dygraph.to_variable(x)
80 81 82

        """
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
83
            if _in_eager_without_dygraph_check():
84 85 86
                return core.eager.Tensor(value, _current_expected_place(),
                                         False, False, name if name else None,
                                         True)
87
            else:
88 89 90 91 92
                py_var = core.VarBase(value=value,
                                      name=name if name else '',
                                      persistable=False,
                                      place=_current_expected_place(),
                                      zero_copy=False)
93
                return py_var
J
Jiabin Yang 已提交
94
        elif isinstance(value, (core.VarBase, Variable, core.eager.Tensor)):
95
            return value
96 97
        else:
            raise TypeError(
98 99
                "The type of input value is invalid, expected type is 'ndarray' or 'Variable', but received %s"
                % type(value))
100 101 102 103 104 105 106 107 108 109 110 111 112 113

    def _create_weight_normalize(self, attr, shape, dtype):
        from .layers import elementwise_mul, elementwise_div, reshape

        # Remove these ops when LayerHelper and layers support indicating
        # program and block.
        def __norm_op(x,
                      out=None,
                      p=2,
                      dim=None,
                      keep_dim=False,
                      block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
114
                    name=unique_name.generate_with_ignorable_key(".".join(
115 116 117 118
                        [self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            abs_out = block.create_var(
119
                name=unique_name.generate_with_ignorable_key(".".join(
120 121 122
                    [self.name, 'weight_norm_abs'])),
                dtype=dtype,
                persistable=False)
123 124 125
            block.append_op(type='abs',
                            inputs={'X': x},
                            outputs={'Out': abs_out})
126
            pow_out = block.create_var(
127
                name=unique_name.generate_with_ignorable_key(".".join(
128 129 130
                    [self.name, 'weight_norm_pow'])),
                dtype=dtype,
                persistable=False)
131 132 133 134
            block.append_op(type='pow',
                            inputs={'X': abs_out},
                            outputs={'Out': pow_out},
                            attrs={'factor': float(p)})
135
            sum_out = block.create_var(
136
                name=unique_name.generate_with_ignorable_key(".".join(
137 138 139
                    [self.name, 'weight_norm_sum'])),
                dtype=dtype,
                persistable=False)
140 141 142 143 144 145 146 147 148 149 150 151
            block.append_op(type='reduce_sum',
                            inputs={'X': pow_out},
                            outputs={'Out': sum_out},
                            attrs={
                                'dim': dim,
                                'keep_dim': keep_dim,
                                'reduce_all': True if dim is None else False
                            })
            block.append_op(type='pow',
                            inputs={'X': sum_out},
                            outputs={'Out': out},
                            attrs={'factor': 1. / p})
152 153 154 155 156 157 158 159
            return out

        def __reshape_op(x,
                         shape,
                         out=None,
                         block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
160
                    name=unique_name.generate_with_ignorable_key(".".join(
161 162 163
                        [self.name, 'weight_norm_reshape'])),
                    dtype=dtype,
                    persistable=False)
164 165
            x_shape = block.create_var(name="Xshape", dtype=x.dtype)
            block.append_op(type="reshape2",
166
                            inputs={'X': x},
167 168 169 170 171
                            attrs={'shape': shape},
                            outputs={
                                "Out": out,
                                "XShape": x_shape
                            })
172 173 174 175 176 177 178 179
            return out

        def __transpose_op(x,
                           axis,
                           out=None,
                           block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
180
                    name=unique_name.generate_with_ignorable_key(".".join(
181 182 183
                        [self.name, 'weight_norm_transpose'])),
                    dtype=dtype,
                    persistable=False)
184 185 186 187
            block.append_op(type='transpose',
                            inputs={'X': x},
                            outputs={'Out': out},
                            attrs={'axis': axis})
188 189 190 191 192 193 194 195 196
            return out

        def __norm_except_dim(x,
                              out=None,
                              dim=None,
                              block=self.startup_program.global_block()):
            """Computes the norm over all dimensions except dim"""
            if out is None:
                out = block.create_var(
197
                    name=unique_name.generate_with_ignorable_key(".".join(
198 199 200 201 202 203 204 205
                        [self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            if dim is None:
                __norm_op(x, out, dim=dim, block=block)
            elif dim == 0:
                out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1)
                reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block)
206
                norm = __norm_op(reshape, dim=[1], block=block)
207 208 209 210
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            elif dim == len(x.shape) - 1:
                out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]]
                reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block)
211
                norm = __norm_op(reshape, dim=[0], block=block)
212 213 214 215 216
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            else:
                perm = list(range(len(x.shape)))
                perm[0], perm[dim] = dim, 0
                transpose = __transpose_op(x, perm, block=block)
217 218 219 220 221
                out_shape = [transpose.shape[0]
                             ] + [1] * (len(transpose.shape) - 1)
                reshape = __reshape_op(transpose,
                                       shape=[transpose.shape[0], -1],
                                       block=block)
222 223 224
                norm = __norm_op(reshape, dim=[1], block=block)
                reshape2 = __reshape_op(norm, shape=out_shape, block=block)
                __transpose_op(reshape2, perm, out=out, block=block)
225 226 227 228
            return out

        def __weight_normalize(g, v, dim):
            """Calculations for weight normalization"""
229 230 231
            norm = __norm_except_dim(v,
                                     dim=dim,
                                     block=self.main_program.current_block())
232 233 234 235
            scale = elementwise_div(
                x=g, y=norm)  # The shapes of g and norm are the same.
            # Currently, elementwise_mul only support broadcast when the shape
            # of y is a subset of the shape of x. Thus, we reshape y to squeeze
236
            # to achieve the subset.
237 238 239 240
            w = elementwise_mul(x=v,
                                y=scale if dim is None else reshape(
                                    x=scale, shape=[v.shape[dim]]),
                                axis=-1 if dim is None else dim)
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
            # To serialize the original parameter for inference, maybe a
            # parameter rather than a variable should be returned.
            return w

        g_param_attr = copy.deepcopy(attr)
        g_param_attr.name = attr.name + '_g'
        g_param_shape = [1] * len(shape)
        if attr.dim is not None:
            g_param_shape[attr.dim] = shape[attr.dim]
        v_param_attr = copy.deepcopy(attr)
        v_param_attr.name = attr.name + '_v'
        v_param_shape = shape

        # Add to startup_program to initialize g and v.
        # Try to reconstruct the initializer of w by initializing g and v.
        # Set the initializers of g and v as below, then the distribution
        # of w is the same as initializing w with the given initializer.
        # For Data-Dependent Initialization, please compute the init-values
        # of g and v in external and then feed the values to g and v by
        # executing an extra program.
        g_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=g_param_shape,
            **g_param_attr._to_kwargs(with_initializer=False))
        v_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=v_param_shape,
            **v_param_attr._to_kwargs(with_initializer=True))
269 270 271 272
        __norm_except_dim(x=v_param,
                          out=g_param,
                          dim=attr.dim,
                          block=self.startup_program.global_block())
273

274
        # keep g_param shape to be consistent with that in main_program
275 276 277 278
        __reshape_op(g_param,
                     g_param_shape,
                     out=g_param,
                     block=self.startup_program.global_block())
279

280 281 282 283 284 285 286 287 288 289 290 291
        # Add weight normalization to main_program
        g_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=g_param_shape, **g_param_attr._to_kwargs())
        v_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=v_param_shape, **v_param_attr._to_kwargs())
        w_param = __weight_normalize(g_param, v_param, dim=attr.dim)
        return w_param

    # TODO: hide the func after we move the layers to Layers
    def create_parameter(self,
                         attr,
                         shape,
292
                         dtype=None,
293
                         is_bias=False,
294
                         default_initializer=None,
295 296
                         stop_gradient=False,
                         type=core.VarDesc.VarType.LOD_TENSOR):
297 298 299 300
        """Create parameters for this layers.

           Args:
               attr: [ParamAttr] should be the parameter attribute for this parameter
T
tianshuo78520a 已提交
301
               shape: shape of the parameter
302 303 304 305 306 307 308 309
               dtype: data type of this parameter
               is_bias: if this is a bias parameter
               default_initializer: set the default initializer for this parameter

        Returns created parameter Variable.
        """
        # Deepcopy the attr so that parameters can be shared in program
        attr = copy.deepcopy(attr)
310
        attr = ParamAttr._to_attr(attr)
311 312
        if not attr:
            return None
313
        assert isinstance(attr, ParamAttr)
314
        for i, size in enumerate(shape):
315 316 317
            assert size > 0, ("Expected every dim's size to be larger than 0, "
                              "but the size of the {}-th dim is {}".format(
                                  i, size))
318 319 320
        # set global dtype
        if not dtype:
            dtype = self.__dtype
321 322 323 324 325 326 327 328 329
        if is_bias:
            suffix = 'b'
            default_initializer = _global_bias_initializer(
            ) if _global_bias_initializer() is not None else default_initializer
        else:
            suffix = 'w'
            default_initializer = _global_weight_initializer(
            ) if _global_weight_initializer(
            ) is not None else default_initializer
330 331 332 333 334 335 336
        if attr.name is None:
            attr.name = unique_name.generate(".".join([self.name, suffix]))

        if default_initializer is None and attr.initializer is None:
            if isinstance(dtype, core.VarDesc.VarType):
                if dtype != core.VarDesc.VarType.FP32 and \
                        dtype != core.VarDesc.VarType.FP64 and \
337 338
                        dtype != core.VarDesc.VarType.FP16 and \
                        dtype != core.VarDesc.VarType.BF16:
339 340 341 342
                    raise TypeError(
                        "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
                    )
            else:
343 344
                if not (dtype.startswith("float")
                        or dtype in ["double", "uint16"]):
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
                    raise TypeError(
                        "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
                    )
            if is_bias:
                attr._set_default_bias_initializer()
            else:
                attr._set_default_param_initializer()
        else:
            attr._set_default_initializer(default_initializer)

        # If weight normalization is set, insert extra parameters and ops.
        # Refer to https://arxiv.org/pdf/1602.07868.pdf
        if isinstance(attr, WeightNormParamAttr):
            param = self._create_weight_normalize(attr, shape, dtype)
            WeightNormParamAttr.params_with_weight_norm.append(param)
            return param
J
Jiabin Yang 已提交
361
        if _non_static_mode():
L
lujun 已提交
362
            # In dygraph mode, we want the returned parameter to be
363
            # initialized so that it can be used imperatively.
H
hong 已提交
364 365 366 367 368 369 370 371
            # check parameter name
            is_used = unique_name.dygraph_parameter_name_checker(attr.name)
            if is_used:
                raise ValueError(
                    "parameter name [{}] have be been used. "
                    "In dygraph mode, the name of parameter can't be same."
                    "Please check the parameter attr value passed to self.create_parameter or "
                    "constructor of dygraph Layers".format(attr.name))
372 373 374
            return self.main_program.global_block().create_parameter(
                dtype=dtype,
                shape=shape,
375
                type=type,
376
                stop_gradient=stop_gradient,
377 378 379 380 381
                **attr._to_kwargs(with_initializer=True))
        else:
            self.startup_program.global_block().create_parameter(
                dtype=dtype,
                shape=shape,
382
                type=type,
383 384
                **attr._to_kwargs(with_initializer=True))
            return self.main_program.global_block().create_parameter(
385
                dtype=dtype, shape=shape, type=type, **attr._to_kwargs())
386

387 388 389 390
    def create_variable_for_type_inference(self,
                                           dtype,
                                           stop_gradient=False,
                                           shape=None):
391 392 393 394 395 396 397 398
        """Create a temporary variable that should be type inferred layer.

        Note:
            The default type will be set to LOD_TENSOR. However, when
            the var is used as operator output, its type will be updated
            based on operator's `VarTypeInference` implementation in
            infer_var_type.
        """
399 400 401
        # set global dtype
        if not dtype:
            dtype = self.__dtype
402
        return self.main_program.current_block().create_var(
403 404
            name=unique_name.generate_with_ignorable_key(".".join(
                [self.name, 'tmp'])),
405
            dtype=dtype,
406
            shape=shape,
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=stop_gradient)

    def create_variable(self, *args, **kwargs):
        """Create Variable for this layers.
        Returns created Variable.
        """
        return self.main_program.current_block().create_var(*args, **kwargs)

    def create_global_variable(self, persistable=False, *args, **kwargs):
        """
        create global variable, note that there is no initializer for this global variable.
        Args:
            persistable(bool): True if it is a checkpoint value.
            *args: See create_var's documentation
            **kwargs: See create_var's documentation

        Returns(Variable): the created variable.
        """
        return self.main_program.global_block().create_var(
            *args, persistable=persistable, **kwargs)

    def create_or_get_global_variable(self, name, *args, **kwargs):
        """
        Creates a global variable if not exists and returns the variable and
        a boolean flag which is true when it is a new variable.
        """
        if self.main_program.global_block().has_var(name):
            return self.main_program.global_block().var(name), False
        else:
            return self.create_global_variable(name=name, *args, **kwargs), True

    def set_variable_initializer(self, var, initializer):
        """Set target Variable's initializer

           Args:
               var: target Variable
               initializer: initializer to use
        """
        assert isinstance(var, Variable)
J
Jiabin Yang 已提交
448
        if _non_static_mode():
449
            initializer(var, self.main_program.global_block())
450 451 452 453 454 455 456 457
        else:
            self.startup_program.global_block().create_var(
                name=var.name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
                persistable=True,
                initializer=initializer)