BlockExpandLayer.cpp 5.5 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "BlockExpandLayer.h"

#include "paddle/utils/Logging.h"

namespace paddle {

REGISTER_LAYER(blockexpand, BlockExpandLayer);

bool BlockExpandLayer::init(const LayerMap& layerMap,
                            const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(config_.inputs_size(), 1);
  const BlockExpandConfig& blockConf = config_.inputs(0).block_expand_conf();
  blockH_ = blockConf.block_y();
  blockW_ = blockConf.block_x();
  strideH_ = blockConf.stride_y();
  strideW_ = blockConf.stride_x();
  paddingH_ = blockConf.padding_y();
  paddingW_ = blockConf.padding_x();
  channels_ = blockConf.channels();
  imgSizeH_ = blockConf.img_size_y();
  imgSizeW_ = blockConf.img_size_x();

  return true;
}

size_t BlockExpandLayer::getBlockNum() {
  CHECK_EQ(inputLayers_.size(), 1UL);
  const BlockExpandConfig& blockConf = config_.inputs(0).block_expand_conf();
  imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
  imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
  if (imgSizeH_ == 0) {
    imgSizeH_ = blockConf.img_size_y();
  }
  if (imgSizeW_ == 0) {
    imgSizeW_ = blockConf.img_size_x();
  }
54
  size_t tmpH = 2 * paddingH_ + imgSizeH_ - blockH_;
Z
zhangjinchao01 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  outputH_ = (int)tmpH < 0 ? 1 : 1 + (tmpH + strideH_ - 1) / strideH_;
  size_t tmpW = 2 * paddingW_ + imgSizeW_ - blockW_;
  outputW_ = (int)tmpW < 0 ? 1 : 1 + (tmpW + strideW_ - 1) / strideW_;

  return outputH_ * outputW_;
}

void BlockExpandLayer::forward(PassType passType) {
  Layer::forward(passType);

  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();

  size_t blockNum = getBlockNum();
  size_t blockSize = blockH_ * blockW_ * channels_;
  resetOutput(blockNum * batchSize, blockSize);
  Argument& out = getOutput();
  MatrixPtr outV = getOutputValue();

  MatrixPtr input = getPrev(0)->getOutputValue();
  Matrix::resizeOrCreate(outVTrans_, blockSize, blockNum, false, useGpu_);
75 76
  ICpuGpuVector::resizeOrCreate(
      out.sequenceStartPositions, batchSize + 1, false);
Z
zhangjinchao01 已提交
77 78 79 80 81 82 83
  IVector::resizeOrCreate(out.cpuSequenceDims, 2 * batchSize, false);
  int* start = out.sequenceStartPositions->getMutableData(false);
  int* dims = out.cpuSequenceDims->getData();
  for (size_t i = 0; i < batchSize; i++) {
    outVTrans_->zeroMem();
    /* expand each block as one row */
    MatrixPtr inputTmp =
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        Matrix::create(input->getData() + i * input->getWidth(),
                       1,
                       input->getWidth(),
                       false,
                       useGpu_);
    outVTrans_->convExpand(*inputTmp,
                           imgSizeH_,
                           imgSizeW_,
                           channels_,
                           blockH_,
                           blockW_,
                           strideH_,
                           strideW_,
                           paddingH_,
                           paddingW_,
                           outputH_,
                           outputW_);
Z
zhangjinchao01 已提交
101
    MatrixPtr outVTmp =
102 103 104 105 106
        Matrix::create(outV->getData() + i * blockNum * blockSize,
                       blockNum,
                       blockSize,
                       false,
                       useGpu_);
Z
zhangjinchao01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    outVTrans_->transpose(outVTmp, false);
    start[i] = i * blockNum;
    dims[2 * i] = outputH_;
    dims[2 * i + 1] = outputW_;
  }
  start[batchSize] = batchSize * blockNum;
}

void BlockExpandLayer::backward(const UpdateCallback& callback) {
  size_t blockNum = outputH_ * outputW_;
  size_t blockSize = blockH_ * blockW_ * channels_;
  /* Calculate the input layers error */
  MatrixPtr preGrad = inputLayers_[0]->getOutputGrad();
  if (!preGrad) {
    return;
  }
  MatrixPtr grad = getOutputGrad();
  MatrixPtr gradTrans = Matrix::create(blockSize, blockNum, false, useGpu_);
  size_t batchSize = preGrad->getHeight();

  CHECK_EQ(batchSize * blockNum, grad->getHeight());
  CHECK_EQ(blockSize, grad->getWidth());

  for (size_t i = 0; i < batchSize; i++) {
    MatrixPtr gradTmp =
132 133 134 135 136
        Matrix::create(grad->getData() + i * blockNum * blockSize,
                       blockNum,
                       blockSize,
                       false,
                       useGpu_);
Z
zhangjinchao01 已提交
137 138
    gradTmp->transpose(gradTrans, false);
    MatrixPtr preGradTmp =
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        Matrix::create(preGrad->getData() + i * preGrad->getWidth(),
                       1,
                       preGrad->getWidth(),
                       false,
                       useGpu_);
    preGradTmp->convShrink(*gradTrans,
                           imgSizeH_,
                           imgSizeW_,
                           channels_,
                           blockH_,
                           blockW_,
                           strideH_,
                           strideW_,
                           paddingH_,
                           paddingW_,
                           outputH_,
                           outputW_,
                           1.0,
                           1.0);
Z
zhangjinchao01 已提交
158 159 160 161
  }
}

}  // namespace paddle