fmha_ref.h 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/dropout_impl.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/transpose_op.cu.h"
18
#include "paddle/phi/kernels/funcs/concat_and_split_functor.h"
19 20
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/funcs/functors.h"
21
#include "paddle/phi/kernels/gpudnn/softmax_gpudnn.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class AttnDropoutParam {
 public:
  AttnDropoutParam() {
    is_test_ = false;
    dropout_implementation_ = "downgrade_in_infer";
    dropout_prob_ = 0.5;
    is_upscale_in_train_ = false;
    is_fix_seed_ = false;
    seed_val_ = 0;
    seed_ = nullptr;
  }
  AttnDropoutParam(bool is_test, const std::string dropout_implementation,
                   float dropout_prob, bool is_upscale_in_train,
                   bool is_fix_seed, int seed_val, const Tensor* seed) {
    is_test_ = is_test;
    dropout_implementation_ = dropout_implementation;
    dropout_prob_ = dropout_prob;
    is_upscale_in_train_ = is_upscale_in_train;
    is_fix_seed_ = is_fix_seed;
    seed_val_ = seed_val;
    seed_ = seed;
  }
  bool is_test_;
  std::string dropout_implementation_;
  float dropout_prob_;
  bool is_upscale_in_train_;
  bool is_fix_seed_;
  int seed_val_;
  const Tensor* seed_;
};

template <typename T>
class FMHARef {
 public:
  FMHARef(const platform::CUDADeviceContext& dev_ctx, int64_t batch_size,
          int64_t seq_len, int64_t num_head, int64_t head_dim,
          AttnDropoutParam param)
      : dev_ctx_(dev_ctx),
        batch_size_(batch_size),
        seq_len_(seq_len),
        num_head_(num_head),
        head_dim_(head_dim),
        dropout_param_(param) {}

  ~FMHARef() {}

  void ComputeForward(const Tensor& qkv_input_tensor,
75
                      const Tensor* cache_kv_tensor,
76
                      const Tensor* src_mask_tensor,
77 78
                      Tensor* transpose_2_out_tensor,
                      Tensor* cache_kv_out_tensor, Tensor* qk_out_tensor,
79 80 81 82 83
                      Tensor* src_mask_out_tensor, Tensor* softmax_out_tensor,
                      Tensor* dropout_mask_out_tensor,
                      Tensor* dropout_out_tensor, Tensor* qktv_out_tensor,
                      Tensor* fmha_out_tensor) {
    // input shape: [bs, seq_len, 3, num_head, head_dim]
84
    // transpose with perm [2, 0, 3, 1, 4],
85 86 87 88 89 90 91 92 93 94 95 96
    // output_shape: [3, bs, num_head, seq_len, head_dim]
    int ndims = 5;
    std::vector<int> perm_1 = {2, 0, 3, 1, 4};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, qkv_input_tensor, perm_1,
                                transpose_2_out_tensor);
    T* qkv_data = transpose_2_out_tensor->data<T>();
    T* qk_out_data = qk_out_tensor->data<T>();
    T* qktv_out_data = qktv_out_tensor->data<T>();
    T* softmax_out_data = softmax_out_tensor->data<T>();
    T* dropout_out_data = dropout_out_tensor->data<T>();
    T* fmha_out_data = fmha_out_tensor->data<T>();

97 98 99 100 101 102 103 104 105 106 107
    auto out_seq_len = seq_len_;
    if (cache_kv_tensor) {
      // kv [2, bs, num_head, seq_len, head_dim]
      auto kv_tensor = transpose_2_out_tensor->Slice(1, 3);
      phi::funcs::ConcatFunctor<phi::GPUContext, T> concat;
      // out [2, bs, num_head, cache_seq_len + seq_len, head_dim]
      concat(dev_ctx_, {*cache_kv_tensor, kv_tensor}, 3, cache_kv_out_tensor);
      out_seq_len = cache_kv_out_tensor->dims()[3];
    }

    int64_t q_size = batch_size_ * seq_len_ * num_head_ * head_dim_;
108
    T* q_ptr = qkv_data;
109 110 111 112 113 114 115 116 117 118 119 120
    T* k_ptr = nullptr;
    T* v_ptr = nullptr;

    if (cache_kv_tensor) {
      int64_t k_size = cache_kv_out_tensor->numel() / 2;
      k_ptr = cache_kv_out_tensor->data<T>();
      v_ptr = k_ptr + k_size;
    } else {
      int64_t k_size = q_size;
      k_ptr = q_ptr + q_size;
      v_ptr = k_ptr + k_size;
    }
121

122 123 124 125 126 127 128 129 130 131 132 133
    {
      // NOTE(wangxi): We scale Q with 1/sqrt(Dh) before QK^T, because for
      // float16 calculation, INF may appear in QK^T if we do not scale before.
      float alpha = 1.0 / sqrt(head_dim_);
      auto q_tensor = transpose_2_out_tensor->Slice(0, 1);
      auto functor = phi::funcs::ScaleFunctor<T>(alpha);
      std::vector<const framework::Tensor*> ins = {&q_tensor};
      std::vector<framework::Tensor*> outs = {&q_tensor};
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx_, ins,
                                                                &outs, functor);
    }

134 135 136
    // q*k^t, batched_gemm
    CBLAS_TRANSPOSE transA = CblasNoTrans;
    CBLAS_TRANSPOSE transB = CblasTrans;
137
    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(dev_ctx_);
138 139
    int gemm_batch_size = batch_size_ * num_head_;
    int gemm_m = seq_len_;
140
    int gemm_n = out_seq_len;
141
    int gemm_k = head_dim_;
142
    T alpha = static_cast<T>(1.0);
143 144 145 146 147 148 149
    T beta = static_cast<T>(0.0);
    int64_t stride_a = gemm_m * gemm_k;
    int64_t stride_b = gemm_k * gemm_n;
    blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha, q_ptr,
                     k_ptr, beta, qk_out_data, gemm_batch_size, stride_a,
                     stride_b);
    int softmax_axis = -1;
150 151 152 153 154 155 156
    if (src_mask_tensor != nullptr) {
      std::vector<const Tensor*> ins;
      std::vector<Tensor*> outs;
      ins.emplace_back(qk_out_tensor);
      ins.emplace_back(src_mask_tensor);
      outs.emplace_back(src_mask_out_tensor);
      int elewise_add_axis = -1;
157 158
      paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary,
                                                     T, T>(
159
          dev_ctx_, ins, &outs, elewise_add_axis, AddFunctor<T>());
160

161 162
      phi::SoftmaxForwardCUDAKernelDriver<T>(dev_ctx_, *src_mask_out_tensor,
                                             softmax_axis, softmax_out_tensor);
163
    } else {
164 165
      phi::SoftmaxForwardCUDAKernelDriver<T>(dev_ctx_, *qk_out_tensor,
                                             softmax_axis, softmax_out_tensor);
166 167 168 169 170
    }

    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
171
    gemm_k = out_seq_len;
172 173 174 175 176 177
    alpha = static_cast<T>(1.0);
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;

    if (dropout_param_.dropout_prob_) {
      DropoutFwGPUKernelDriver<T>(
H
hong 已提交
178 179 180
          static_cast<const phi::GPUContext&>(dev_ctx_),
          dropout_param_.is_test_, static_cast<const std::string>(
                                       dropout_param_.dropout_implementation_),
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
          dropout_param_.dropout_prob_, dropout_param_.is_upscale_in_train_,
          dropout_param_.is_fix_seed_, dropout_param_.seed_val_,
          static_cast<const Tensor&>(*softmax_out_tensor), dropout_param_.seed_,
          dropout_mask_out_tensor, dropout_out_tensor);
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       dropout_out_data, v_ptr, beta, qktv_out_data,
                       gemm_batch_size, stride_a, stride_b);
    } else {
      // softmax_out * v, batched_gemm
      // output shape: [batch_size, num_heads, seq_len, head_dim]
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       softmax_out_data, v_ptr, beta, qktv_out_data,
                       gemm_batch_size, stride_a, stride_b);
    }
    // transpose: [0, 2, 1, 3]
    // output shape: [batch_size, seq_len, num_heads, head_dim]
    std::vector<int> perm_3 = {0, 2, 1, 3};
    ndims = 4;
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, *qktv_out_tensor, perm_3,
                                fmha_out_tensor);
  }

  void ComputeBackward(
204
      const Tensor& transpose_2_out_tensor, const Tensor* src_mask_tensor,
205 206 207 208 209 210 211
      const Tensor& softmax_out_tensor, const Tensor& dropout_mask_out_tensor,
      const Tensor& dropout_out_tensor, const Tensor& qk_out_tensor,
      const Tensor& src_mask_out_tensor, const Tensor& fmha_out_grad_tensor,
      Tensor* qktv_out_grad_tensor, Tensor* dropout_out_grad_tensor,
      Tensor* softmax_out_grad_tensor, Tensor* src_mask_out_grad_tensor,
      Tensor* qk_out_grad_tensor, Tensor* transpose_2_out_grad_tensor,
      Tensor* src_mask_grad_tensor, Tensor* qkv_input_grad_tensor) {
212
    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(dev_ctx_);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    int q_size = batch_size_ * seq_len_ * num_head_ * head_dim_;
    int k_size = q_size;
    int softmax_axis = -1;

    T* qkv_grad_data = transpose_2_out_grad_tensor->data<T>();
    T* q_grad_ptr = qkv_grad_data;
    T* k_grad_ptr = q_grad_ptr + q_size;
    T* v_grad_ptr = k_grad_ptr + k_size;
    const T* qkv_data = transpose_2_out_tensor.data<T>();
    const T* q_ptr = qkv_data;
    const T* k_ptr = q_ptr + q_size;
    const T* v_ptr = k_ptr + k_size;

    const T* softmax_out_data = softmax_out_tensor.data<T>();
    T* softmax_out_grad_data = softmax_out_grad_tensor->data<T>();
    const T* dropout_out_data = dropout_out_tensor.data<T>();
    T* dropout_out_grad_data = dropout_out_grad_tensor->data<T>();
    T* qktv_out_grad_data = qktv_out_grad_tensor->data<T>();

    // transpose bw
    int ndims = 4;
    std::vector<int> perm_3 = {0, 2, 1, 3};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, fmha_out_grad_tensor, perm_3,
                                qktv_out_grad_tensor);

    // recall batchedgemm(nn) fw: softmax_out_data(x) * v_ptr(y) =
    // qktv_out_data(out)
    CBLAS_TRANSPOSE transA = CblasTrans;
    CBLAS_TRANSPOSE transB = CblasNoTrans;
    int gemm_batch_size = batch_size_ * num_head_;
    int gemm_m = seq_len_;
    int gemm_n = head_dim_;
    int gemm_k = seq_len_;
    T alpha = static_cast<T>(1.0);
    T beta = static_cast<T>(0.0);
    int64_t stride_a = gemm_m * gemm_k;
    int64_t stride_b = gemm_k * gemm_n;
    // bw: dy = x^t * dout
    if (dropout_param_.dropout_prob_) {
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       dropout_out_data, qktv_out_grad_data, beta, v_grad_ptr,
                       gemm_batch_size, stride_a, stride_b);
    } else {
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       softmax_out_data, qktv_out_grad_data, beta, v_grad_ptr,
                       gemm_batch_size, stride_a, stride_b);
    }
    // bw: dx = dout * y^t
    transA = CblasNoTrans;
    transB = CblasTrans;
    gemm_m = seq_len_;
    gemm_n = seq_len_;
    gemm_k = head_dim_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
    if (dropout_param_.dropout_prob_) {
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       qktv_out_grad_data, v_ptr, beta, dropout_out_grad_data,
                       gemm_batch_size, stride_a, stride_b);
    } else {
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       qktv_out_grad_data, v_ptr, beta, softmax_out_grad_data,
                       gemm_batch_size, stride_a, stride_b);
    }
    // dropout bw
    if (dropout_param_.dropout_prob_) {
      DropoutGradGPUKernelDriver<T>(
H
hong 已提交
280 281 282
          static_cast<const phi::GPUContext&>(dev_ctx_),
          static_cast<const std::string>(
              dropout_param_.dropout_implementation_),
283 284 285 286 287 288
          dropout_param_.dropout_prob_,
          static_cast<const Tensor&>(*dropout_out_grad_tensor),
          dropout_mask_out_tensor, softmax_out_grad_tensor->numel(),
          softmax_out_grad_tensor);
    }

289
    if (src_mask_tensor != nullptr) {
290 291 292
      phi::SoftmaxBackwardCUDAKernelDriver<T>(
          dev_ctx_, softmax_out_tensor, *softmax_out_grad_tensor, softmax_axis,
          src_mask_out_grad_tensor);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

      // recall LaunchElementwiseCudaKernel fw:  src_mask_out = qk_out +
      // src_mask
      // Special case when dy is not needed and dx doesn't reduce
      if (qk_out_grad_tensor != nullptr && src_mask_grad_tensor == nullptr &&
          qk_out_tensor.dims() == src_mask_out_tensor.dims()) {
        VLOG(4) << "Special case when dy is not needed and dx doesn't "
                   "reduce";
        framework::TensorCopy(*src_mask_out_grad_tensor, dev_ctx_.GetPlace(),
                              dev_ctx_, qk_out_grad_tensor);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Only used for the backward elementwise_add op when"
            "dy is not needed and dx is not reduce"));
        return;
      }

    } else {
311 312 313
      phi::SoftmaxBackwardCUDAKernelDriver<T>(dev_ctx_, softmax_out_tensor,
                                              *softmax_out_grad_tensor,
                                              softmax_axis, qk_out_grad_tensor);
314 315 316
    }

    T* qk_out_grad_data = qk_out_grad_tensor->data<T>();
317 318 319
    // NOTE(wangxi): For we scale Q with 1/sqrt(Dh) in forward, so we set
    //   alpha = 1.0 in backward.
    alpha = static_cast<T>(1.0);
320 321 322 323 324 325 326 327 328 329 330 331 332
    // recall batchedgemm(nt) fw:  q_ptr * (k_ptr)^t = qk_out
    // bw: dy (seq_len * head_dim) = (dout)^t * x
    transA = CblasTrans;
    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = seq_len_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
    blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                     qk_out_grad_data, q_ptr, beta, k_grad_ptr, gemm_batch_size,
                     stride_a, stride_b);
    // dx (seq_len * head_dim) = dout * y
333
    alpha = static_cast<T>(1.0 / sqrt(head_dim_));
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    transA = CblasNoTrans;
    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = seq_len_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
    blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                     qk_out_grad_data, k_ptr, beta, q_grad_ptr, gemm_batch_size,
                     stride_a, stride_b);

    // transpose bw
    ndims = 5;
    std::vector<int> perm_1 = {1, 3, 0, 2, 4};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, *transpose_2_out_grad_tensor,
                                perm_1, qkv_input_grad_tensor);
  }

 private:
  const platform::CUDADeviceContext& dev_ctx_;

  int64_t batch_size_;
  int64_t seq_len_;
  int64_t num_head_;
  int64_t head_dim_;

  AttnDropoutParam dropout_param_;
};

}  // namespace operators
}  // namespace paddle