selected_rows_functor.cc 24.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
minqiyang 已提交
15
#include <algorithm>
T
wip  
typhoonzero 已提交
16
#include <set>
Q
Qiao Longfei 已提交
17
#include <unordered_map>
T
wip  
typhoonzero 已提交
18

S
sneaxiy 已提交
19
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/math/selected_rows_functor.h"
21 22 23 24 25

namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
26 27
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
28 29 30 31
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
32 33 34 35 36 37
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
55 56 57 58 59 60 61 62 63 64 65 66
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
67 68

    auto in1_place = input1.place();
69 70 71
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
72
    auto in2_place = input2.place();
73 74 75
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
76
    auto out_place = context.GetPlace();
77 78 79
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
80 81 82

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
83 84
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place), out_data,
                 BOOST_GET_CONST(platform::CPUPlace, in1_place), in1_data,
85 86 87
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
88
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place),
89
                 out_data + in1_value.numel(),
90
                 BOOST_GET_CONST(platform::CPUPlace, in2_place), in2_data,
91 92 93 94
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
95 96
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
97 98

template <typename T>
Q
QI JUN 已提交
99 100
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
101 102 103 104 105
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
106 107 108 109 110 111 112 113 114 115 116 117
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
118 119 120 121 122

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
123 124 125 126 127 128 129 130 131 132 133 134
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
135

Q
QI JUN 已提交
136
    SetConstant<platform::CPUDeviceContext, T> functor;
137 138 139 140 141 142 143 144 145 146 147 148 149 150
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
151
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
152 153 154
  }
};

Q
QI JUN 已提交
155 156
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
157 158

template <typename T>
Q
QI JUN 已提交
159 160
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
161 162 163 164
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
165 166 167 168 169 170
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
171 172 173 174 175 176 177 178

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Yu Yang 已提交
179
    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
180 181

    auto in1_place = input1.place();
182 183 184
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
185
    auto in2_place = input2->place();
186 187 188
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
189 190 191

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
192
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, in2_place),
Q
QI JUN 已提交
193
                 in2_data + input2_offset,
194
                 BOOST_GET_CONST(platform::CPUPlace, in1_place), in1_data,
Q
QI JUN 已提交
195 196 197 198
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
199 200 201 202
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
203

M
minqiyang 已提交
204 205 206 207 208 209 210 211 212 213 214 215
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<framework::SelectedRows*>& input1,
                  const std::vector<int64_t>& input2_offsets,
                  framework::SelectedRows* input2) {
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
216 217 218 219 220 221
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
248
template <typename T>
Q
QI JUN 已提交
249 250
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
251 252
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
Q
Qiao Longfei 已提交
253
    if (UNLIKELY(input1.rows().size() == 0)) {
254 255 256
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
257 258
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
259 260 261 262 263 264
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
265 266 267 268 269

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
270 271 272 273 274 275
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
289 290 291 292
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
293

T
typhoonzero 已提交
294 295 296 297 298 299 300 301
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

Q
Qiao Longfei 已提交
302 303 304 305
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
306 307
elementwise_add_to(const DeviceContext& ctx, BlasT<DeviceContext, T>* blas,
                   size_t data_len, const T* in, T* out) {
Q
Qiao Longfei 已提交
308
  blas->AXPY(data_len, 1., in, out);
Q
Qiao Longfei 已提交
309 310 311 312 313 314
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
315 316
elementwise_add_to(const DeviceContext& ctx, BlasT<DeviceContext, T>* blas,
                   size_t data_len, const T* in, T* out) {
T
Tao Luo 已提交
317
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
318 319
    out[i] += in[i];
  }
T
typhoonzero 已提交
320 321 322 323
}

template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
T
wip  
typhoonzero 已提交
324
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
325 326
                                     const framework::SelectedRows& input,
                                     const bool sorted_result = false) {
T
wip  
typhoonzero 已提交
327
    framework::SelectedRows out;
328
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
329 330 331 332 333
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
334 335
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
336 337
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
338
    (*this)(context, inputs, output, sorted_result);
339
  }
T
typhoonzero 已提交
340

341 342
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
343 344
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
Q
Qiao Longfei 已提交
345
    if (inputs.size() == 0) {
M
minqiyang 已提交
346
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
347 348 349 350
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
351
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
352 353 354 355 356
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
357
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
358 359 360 361
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
362 363
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
364
    size_t row_num = 0;
365
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
366
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
367 368
        continue;
      }
369
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
370 371 372
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
373
      PADDLE_ENFORCE_EQ(input_height, input->height(),
374 375
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
376
      row_num += input->rows().size();
377 378
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
379

380
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
381
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
382
        framework::make_ddim(
383
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
384
        context.GetPlace());
385
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
386

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
402
        auto in_numel = in->rows().size() * input_width;
403
        memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place),
404
                     out_data + copied_numel,
405
                     BOOST_GET_CONST(platform::CPUPlace, in_place), in_data,
406 407 408 409 410 411
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
412

413 414 415
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
416

417 418 419 420 421 422 423 424
      out.set_rows(merge_rows);

      math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
      constant_functor(context, out.mutable_value(), 0.0);

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
425
      }
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
      for (auto* input : inputs) {
        if (input->rows().size() == 0) {
          continue;
        }
        auto* input_data = input->value().data<T>();
        auto& input_rows = input->rows();

        for (size_t i = 0; i < input_rows.size(); i++) {
          size_t out_i = rows_to_id[input_rows[i]];
          elementwise_add_to<platform::CPUDeviceContext, T>(
              context, &blas, static_cast<size_t>(input_width),
              &input_data[i * input_width], &out_data[out_i * input_width]);
        }
T
typhoonzero 已提交
441 442
      }
    }
T
wip  
typhoonzero 已提交
443 444 445
  }
};

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output) {
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
491 492 493
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
494
      PADDLE_ENFORCE_EQ(input_height, input->height(),
495 496
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

    math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
        elementwise_add_to<platform::CPUDeviceContext, T>(
            context, &blas, static_cast<size_t>(input_width),
            &input_data[i * input_width], &out_data[out_i * input_width]);
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

T
wip  
typhoonzero 已提交
547 548
template struct MergeAdd<platform::CPUDeviceContext, int>;
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
Q
Qiao Longfei 已提交
549 550
template struct MergeAdd<platform::CPUDeviceContext, float>;
template struct MergeAdd<platform::CPUDeviceContext, double>;
T
wip  
typhoonzero 已提交
551

552 553 554 555 556
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
557 558
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
559 560 561
  void operator()(const platform::CPUDeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
562 563
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
564 565 566 567 568 569
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
570 571 572 573 574

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
575 576 577 578 579 580
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
625 626 627 628
  }
};

}  // namespace scatter
629 630 631
}  // namespace math
}  // namespace operators
}  // namespace paddle