test_jit_layer.py 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import paddle
import unittest
import tempfile
import numpy as np
from paddle.static import InputSpec
21
from paddle.fluid.framework import _dygraph_place_guard
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
from paddle.jit.layer import Layer
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator

paddle.seed(1)


class Net(paddle.nn.Layer):

    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = paddle.nn.Linear(4, 4)
        self.fc2 = paddle.nn.Linear(4, 4)
        self._bias = 0.4

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def forward(self, x):
        out = self.fc1(x)
        out = self.fc2(out)
        out = paddle.nn.functional.relu(out)
        out = paddle.mean(out)
        return out

    @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')])
    def infer(self, input):
        out = self.fc2(input)
        out = out + self._bias
        out = paddle.mean(out)
        return out


class TestMultiLoad(unittest.TestCase):

54
    def setUp(self):
55 56
        self.temp_dir = tempfile.TemporaryDirectory()

57 58 59 60 61
    def tearDown(self):
        self.temp_dir.cleanup()

    def test_multi_load(self):

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        x = paddle.full([2, 4], 2)
        model = Net()
        program_translator = ProgramTranslator()
        program_translator.enable(False)
        forward_out1 = model.forward(x)
        infer_out1 = model.infer(x)
        program_translator.enable(True)

        model_path = os.path.join(self.temp_dir.name, 'multi_program')
        paddle.jit.save(model, model_path, combine_params=True)
        place = paddle.CPUPlace()
        if paddle.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
        jit_layer = Layer()
        jit_layer.load(model_path, place)
        forward_out2 = jit_layer.forward(x)
        infer_out2 = jit_layer.infer(x)
79 80
        np.testing.assert_allclose(forward_out1, forward_out2[0], rtol=1e-05)
        np.testing.assert_allclose(infer_out1, infer_out2[0], rtol=1e-05)
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

class SaveLinear(paddle.nn.Layer):

    def __init__(self):
        super().__init__()
        self.linear = paddle.nn.Linear(80, 80)

    @paddle.jit.to_static(
        input_spec=[InputSpec(shape=[None, 80], dtype='float32')])
    def forward(self, x):
        out = self.linear(x)
        return out


class TestMKLOutput(unittest.TestCase):

    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
102 103
        self.temp_dir.cleanup()

104 105 106 107 108 109 110 111 112 113 114 115 116
    def test_mkl_output(self):
        with _dygraph_place_guard(place=paddle.CPUPlace()):
            net = SaveLinear()
            model_path = os.path.join(self.temp_dir.name, 'save_linear')
            paddle.jit.save(net, model_path, combine_params=True)

            layer = Layer()
            layer.load(model_path, paddle.CPUPlace())
            x = paddle.ones([498, 80])
            out = layer.forward(x)
            out = paddle.unsqueeze(out[0], 0)
            np.testing.assert_equal(out.shape, [1, 498, 80])

117 118 119

if __name__ == '__main__':
    unittest.main()