categorical.py 11.6 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import warnings

import numpy as np
19
import paddle
20
from paddle import _C_ops
21 22 23 24 25 26 27 28 29
from paddle.distribution import distribution
from paddle.fluid import core
from paddle.fluid.data_feeder import (check_dtype, check_type,
                                      check_variable_and_dtype, convert_dtype)
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
from paddle.fluid.layers import (control_flow, elementwise_add, elementwise_div,
                                 elementwise_mul, elementwise_sub, nn, ops,
                                 tensor)
from paddle.tensor import arange, concat, gather_nd, multinomial
30 31


32
class Categorical(distribution.Distribution):
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    r"""
    Categorical distribution is a discrete probability distribution that 
    describes the possible results of a random variable that can take on 
    one of K possible categories, with the probability of each category 
    separately specified.

    The probability mass function (pmf) is:

    .. math::

        pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}

    In the above equation:

    * :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.

    Args:
        logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distribution import Categorical

            paddle.seed(100) # on CPU device
            x = paddle.rand([6])
            print(x)
            # [0.5535528  0.20714243 0.01162981
            #  0.51577556 0.36369765 0.2609165 ]

            paddle.seed(200) # on CPU device
            y = paddle.rand([6])
            print(y)
            # [0.77663314 0.90824795 0.15685187
            #  0.04279523 0.34468332 0.7955718 ]

            cat = Categorical(x)
            cat2 = Categorical(y)

            paddle.seed(1000) # on CPU device
            cat.sample([2,3])
            # [[0, 0, 5],
            #  [3, 4, 5]]

            cat.entropy()
            # [1.77528]

            cat.kl_divergence(cat2)
            # [0.071952]

            value = paddle.to_tensor([2,1,3])
            cat.probs(value)
            # [0.00608027 0.108298 0.269656]

            cat.log_prob(value)
            # [-5.10271 -2.22287 -1.31061]

    """

    def __init__(self, logits, name=None):
        """
        Args:
            logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
            name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        """
J
Jiabin Yang 已提交
100
        if not _non_static_mode():
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            check_type(logits, 'logits',
                       (np.ndarray, tensor.Variable, list, tuple),
                       'Categorical')

        self.name = name if name is not None else 'Categorical'
        self.dtype = 'float32'

        if self._validate_args(logits):
            self.logits = logits
            self.dtype = convert_dtype(logits.dtype)
        else:
            if isinstance(logits, np.ndarray) and str(
                    logits.dtype) in ['float32', 'float64']:
                self.dtype = logits.dtype
            self.logits = self._to_tensor(logits)[0]
            if self.dtype != convert_dtype(self.logits.dtype):
                self.logits = tensor.cast(self.logits, dtype=self.dtype)
118 119
        dist_sum = paddle.sum(self.logits, axis=-1, keepdim=True)
        self._prob = self.logits / dist_sum
120 121 122 123 124 125 126 127 128

    def sample(self, shape):
        """Generate samples of the specified shape.

        Args:
            shape (list): Shape of the generated samples.

        Returns:
            Tensor: A tensor with prepended dimensions shape.
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                paddle.seed(1000) # on CPU device
                cat.sample([2,3])
                # [[0, 0, 5],
                #  [3, 4, 5]]

        """
        name = self.name + '_sample'
J
Jiabin Yang 已提交
151
        if not _non_static_mode():
152 153 154 155 156 157 158
            check_type(shape, 'shape', (list), 'sample')

        num_samples = np.prod(np.array(shape))

        logits_shape = list(self.logits.shape)
        if len(logits_shape) > 1:
            sample_shape = shape + logits_shape[:-1]
159 160
            logits = paddle.reshape(
                self.logits, [np.prod(logits_shape[:-1]), logits_shape[-1]])
161 162 163 164
        else:
            sample_shape = shape
            logits = self.logits

165 166 167 168 169 170 171 172 173 174
        sample_index = multinomial(
            self._logits_to_probs(logits), num_samples, True)

        # multinomial sample shape is (logits.shape[:-1], num_samples), need to
        # tanspose to (num_samples, logits.shape[:-1])
        permute = list(range(sample_index.dim()))
        permute.insert(0, permute.pop(-1))
        sample_index = sample_index.transpose(permute)

        return paddle.reshape(sample_index, sample_shape, name=name)
175 176 177 178 179 180 181 182 183

    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.

        Args:
            other (Categorical): instance of Categorical. The data type is float32.

        Returns:
            Tensor: kl-divergence between two Categorical distributions.
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                paddle.seed(200) # on CPU device
                y = paddle.rand([6])
                print(y)
                # [0.77663314 0.90824795 0.15685187
                #  0.04279523 0.34468332 0.7955718 ]

                cat = Categorical(x)
                cat2 = Categorical(y)

                cat.kl_divergence(cat2)
                # [0.071952]

        """
        name = self.name + '_kl_divergence'
J
Jiabin Yang 已提交
211
        if not _non_static_mode():
212 213
            check_type(other, 'other', Categorical, 'kl_divergence')

214 215 216 217
        logits = self.logits - \
            paddle.max(self.logits, axis=-1, keepdim=True)
        other_logits = other.logits - paddle.max(
            other.logits, axis=-1, keepdim=True)
218 219
        e_logits = ops.exp(logits)
        other_e_logits = ops.exp(other_logits)
220 221
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
        other_z = paddle.sum(other_e_logits, axis=-1, keepdim=True)
222
        prob = e_logits / z
223 224 225 226 227
        kl = paddle.sum(prob * (
            logits - paddle.log(z) - other_logits + paddle.log(other_z)),
                        axis=-1,
                        keepdim=True,
                        name=name)
228 229 230 231 232 233 234 235

        return kl

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
            Tensor: Shannon entropy of Categorical distribution. The data type is float32.
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                cat.entropy()
                # [1.77528]

        """
        name = self.name + '_entropy'
256 257
        logits = self.logits - \
            paddle.max(self.logits, axis=-1, keepdim=True)
258
        e_logits = ops.exp(logits)
259
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
260 261
        prob = e_logits / z

262 263
        neg_entropy = paddle.sum(prob * (logits - paddle.log(z)), axis=-1)
        entropy = paddle.scale(neg_entropy, scale=-1.0, name=name)
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        return entropy

    def probs(self, value):
        """Probabilities of the given category (``value``).

        If ``logits`` is 2-D or higher dimension, the last dimension will be regarded as 
        category, and the others represents the different distributions.
        At the same time, if ``vlaue`` is 1-D Tensor, ``value`` will be broadcast to the 
        same number of distributions as ``logits``.
        If ``value`` is not 1-D Tensor, ``value`` should have the same number distributions
        with ``logits. That is, ``value[:-1] = logits[:-1]``.

        Args:
            value (Tensor): The input tensor represents the selected category index.

        Returns:
            Tensor: probability according to the category index.
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                value = paddle.to_tensor([2,1,3])
                cat.probs(value)
                # [0.00608027 0.108298 0.269656]

        """
        name = self.name + '_probs'
302 303 304 305 306
        if len(self._prob.shape) == 1:  # batch_shape is empty
            return paddle.gather(
                self._prob, value.reshape(
                    [-1], name=name), name=name).reshape(
                        value.shape, name=name)
307
        else:
308 309 310 311 312 313 314 315 316
            if len(value.shape) == 1:
                return paddle.take_along_axis(
                    self._prob,
                    paddle.reshape(
                        value, (len(self._prob.shape) - 1) * [1] + [-1],
                        name=name),
                    axis=-1)
            else:
                return paddle.take_along_axis(self._prob, value, axis=-1)
317 318 319 320 321 322 323 324 325

    def log_prob(self, value):
        """Log probabilities of the given category. Refer to ``probs`` method.

        Args:
            value (Tensor): The input tensor represents the selected category index.

        Returns:
            Tensor: Log probability.
326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                value = paddle.to_tensor([2,1,3])
                cat.log_prob(value)
                # [-5.10271 -2.22287 -1.31061]

        """
        name = self.name + '_log_prob'

348
        return paddle.log(self.probs(value), name=name)