test_orig2prim.py 23.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers.utils import flatten
from paddle.incubate.autograd.primrules import _orig2prim, _prim2orig, _jvp, _transpose
21
import paddle.fluid.core as core
22 23 24 25 26 27

paddle.enable_static()


############################ Test orig2prim rules ############################
class TestElementWiseAddOrig2Prim(unittest.TestCase):
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    def setUp(self):
        self.main_program = paddle.static.Program()
        self.startup_program = paddle.static.Program()
        self.layer_help = LayerHelper('TestOrig2Prim')

        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
            self.init_data()

    def init_data(self):
        self.op_type = 'elementwise_add'
        X = paddle.static.data(name='X', shape=[2, 2], dtype='float')
        Y = paddle.static.data(name='Y', shape=[2, 2], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_add', 'add_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}

    def test_op(self):
        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
58 59 60 61
            op = self.layer_help.append_op(type=self.op_type,
                                           inputs=self.input,
                                           outputs=self.output,
                                           attrs=self.attrs)
62 63 64 65 66 67 68 69 70 71 72

            prim_out = _orig2prim(op, *self.orig2prim_args)
            all_ops = [op.type for op in self.main_program.block(0).ops]

            self.assertEqual(sorted(all_ops), sorted(self.all_ops))
            prim_out = flatten(prim_out)
            for k, v in self.out_map.items():
                self.assertEqual(prim_out[k].shape, v.shape)


class TestSqrtOrig2Prim(TestElementWiseAddOrig2Prim):
73

74 75 76 77
    def init_data(self):
        self.op_type = 'sqrt'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

78 79 80
        self.input = {
            'X': X,
        }
81 82 83 84 85 86 87 88 89 90 91 92 93
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['sqrt', 'sqrt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestElementWiseMulOrig2Prim(TestElementWiseAddOrig2Prim):
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    def init_data(self):
        self.op_type = 'elementwise_mul'
        X = paddle.static.data(name='X', shape=[8, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[8, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_mul', 'mul_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestMatmulV2Orig2Prim(TestElementWiseAddOrig2Prim):
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def init_data(self):
        self.op_type = 'matmul_v2'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')
        Y = paddle.static.data(name='Y', shape=[4, 3], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'trans_x': True, 'trans_y': True}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['matmul_v2', 'transpose_p', 'transpose_p', 'matmul_p']
        self.out_map = {0: self.output['Out']}


class TestTanhOrig2Prim(TestElementWiseAddOrig2Prim):
133

134 135 136 137
    def init_data(self):
        self.op_type = 'tanh'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

138 139 140
        self.input = {
            'X': X,
        }
141 142 143 144 145 146 147 148 149 150 151
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['tanh', 'tanh_p']
        self.out_map = {0: self.output['Out']}


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class TestSinOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'sin'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['sin', 'sin_p']
        self.out_map = {0: self.output['Out']}


class TestCosOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'cos'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['cos', 'cos_p']
        self.out_map = {0: self.output['Out']}


class TestExpOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'exp'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['exp', 'exp_p']
        self.out_map = {0: self.output['Out']}


212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
class TestErfOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'erf'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['erf', 'erf_p']
        self.out_map = {0: self.output['Out']}


232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
class TestAbsOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'abs'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['abs', 'abs_p']
        self.out_map = {0: self.output['Out']}


252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
class TestLogOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'log'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['log', 'log_p']
        self.out_map = {0: self.output['Out']}


272
class TestReshape2Orig2Prim(TestElementWiseAddOrig2Prim):
273

274 275 276 277
    def init_data(self):
        self.op_type = 'reshape2'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

278 279 280
        self.input = {
            'X': X,
        }
281
        self.output = {
282 283
            'Out':
            X,
284 285 286 287 288 289 290 291
            'XShape':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'shape': [6, 5]}

        self.orig2prim_args = (
            None,
            None,
292 293
            X,
        )
294 295 296 297 298 299
        self.all_ops = ['reshape2', 'reshape_p', 'fill_constant_p']
        # Do not checke XShape
        self.out_map = {0: self.output['Out']}


class TestConcatOrig2Prim(TestElementWiseAddOrig2Prim):
300

301 302 303 304 305
    def init_data(self):
        self.op_type = 'concat'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[3, 6], dtype='int64')

306 307 308
        self.input = {
            'X': [X, Y],
        }
309 310 311 312 313 314 315 316
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': 0}

        self.orig2prim_args = (
            None,
317 318
            (X, Y),
        )
319 320 321 322 323
        self.all_ops = ['concat', 'concat_p']
        self.out_map = {0: self.output['Out']}


class TestSliceOrig2Prim(TestElementWiseAddOrig2Prim):
324

325 326 327 328
    def init_data(self):
        self.op_type = 'slice'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

329 330 331
        self.input = {
            'Input': X,
        }
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'axes': [0],
            'starts': [1],
            'ends': [4],
        }

        self.orig2prim_args = (None, None, X, None, None)
        self.all_ops = ['slice', 'slice_select_p']
        self.out_map = {0: self.output['Out']}


class TestFillZerosLikeOrig2Prim(TestElementWiseAddOrig2Prim):
348

349 350 351 352
    def init_data(self):
        self.op_type = 'fill_zeros_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

353 354 355
        self.input = {
            'X': X,
        }
356 357 358 359 360 361 362 363 364 365 366
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_zeros_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
class TestFillAnyLikeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'fill_any_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_any_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


class TestFillAnyLikeOrig2Prim2(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'fill_any_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'dtype': paddle.float32, 'value': 5}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_any_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


407
class TestSumOrig2Prim(TestElementWiseAddOrig2Prim):
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    def init_data(self):
        self.op_type = 'sum'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = ((X, Y), )
        self.all_ops = ['sum', 'add_p']
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim1(TestElementWiseAddOrig2Prim):
427

428 429 430 431
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

432 433 434
        self.input = {
            'X': X,
        }
435 436 437 438 439 440 441 442 443 444
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'porder': 1,
            'asvector': True,
        }

        self.orig2prim_args = (X, )
445 446 447
        self.all_ops = [
            'p_norm', 'reshape_p', 'sqrt_p', 'reduce_sum_p', 'mul_p'
        ]
448 449 450 451
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim2(TestElementWiseAddOrig2Prim):
452

453 454 455 456
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

457 458 459
        self.input = {
            'X': X,
        }
460 461 462 463 464 465 466 467 468 469
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'porder': 2,
            'asvector': True,
        }

        self.orig2prim_args = (X, )
470 471 472
        self.all_ops = [
            'p_norm', 'reshape_p', 'sqrt_p', 'reduce_sum_p', 'mul_p'
        ]
473 474 475 476
        self.out_map = {0: self.output['Out']}


class TestIndexSelectOrig2Prim(TestElementWiseAddOrig2Prim):
477

478 479 480 481 482 483 484 485 486 487
    def init_data(self):
        self.op_type = 'index_select'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Index = paddle.static.data(name='Index', shape=[2], dtype='int32')

        self.input = {'X': X, 'Index': Index}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
488 489 490
        self.attrs = {
            'dim': 0,
        }
491 492 493

        self.orig2prim_args = (
            Index,
494 495
            X,
        )
496 497 498 499 500
        self.all_ops = ['index_select', 'gather_p']
        self.out_map = {0: self.output['Out']}


class TestElementwiseSubOrig2Prim(TestElementWiseAddOrig2Prim):
501

502 503 504 505 506 507 508 509 510 511
    def init_data(self):
        self.op_type = 'elementwise_sub'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int32')
        Y = paddle.static.data(name='Y', shape=[6], dtype='int32')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
512 513 514
        self.attrs = {
            'dim': 0,
        }
515 516 517

        self.orig2prim_args = (
            X,
518 519
            Y,
        )
520 521 522 523 524
        self.all_ops = ['elementwise_sub', 'broadcast_p', 'sub_p']
        self.out_map = {0: self.output['Out']}


class TestScaleOrig2Prim(TestElementWiseAddOrig2Prim):
525

526 527 528 529
    def init_data(self):
        self.op_type = 'scale'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

530 531 532
        self.input = {
            'X': X,
        }
533 534 535 536 537 538 539 540
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'scale': 2.0, 'bias': 1.0, 'bias_after_scale': True}

        self.orig2prim_args = (
            None,
541 542
            X,
        )
543 544 545 546 547 548 549
        self.all_ops = [
            'scale', 'fill_constant_p', 'fill_constant_p', 'mul_p', 'add_p'
        ]
        self.out_map = {0: self.output['Out']}


class TestAssignOrig2Prim(TestElementWiseAddOrig2Prim):
550

551 552 553 554
    def init_data(self):
        self.op_type = 'assign'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

555 556 557
        self.input = {
            'X': X,
        }
558 559 560 561 562 563 564 565 566 567 568
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['assign', 'fill_constant_p', 'add_p']
        self.out_map = {0: self.output['Out']}


569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
class TestWhereOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'where'
        Cond = paddle.static.data(name='Condition', shape=[5, 6], dtype='bool')
        X = paddle.static.data(name='X', shape=[5, 6], dtype='float32')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32')

        self.input = {'Condition': Cond, 'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}
        self.orig2prim_args = (Cond, X, Y)
        self.all_ops = ['where', 'select_p']
        self.out_map = {0: self.output['Out']}


class TestEqualOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['equal', 'eq_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
class TestNeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'not_equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['not_equal', 'ne_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGtOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'greater_than'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['greater_than', 'gt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'greater_equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['greater_equal', 'ge_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
class TestPowOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'elementwise_pow'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_pow', 'pow_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
class TestMaxOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'elementwise_max'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_max', 'max_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
class TestGeluOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'approximate': False}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'gelu', 'add_p', 'erf_p', 'fill_constant_p', 'fill_constant_p',
            'fill_constant_p', 'mul_p', 'mul_p', 'mul_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGeluApproximateOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'approximate': True}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'add_p', 'add_p', 'fill_constant_p', 'fill_constant_p',
            'fill_constant_p', 'fill_constant_p', 'fill_constant_p', 'gelu',
            'mul_p', 'mul_p', 'mul_p', 'mul_p', 'pow_p', 'tanh_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
class TestReduceSumOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'reduce_sum'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [0, 1], 'keep_dim': False}

        self.orig2prim_args = (X, )
        self.all_ops = ['reduce_sum', 'reduce_sum_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestReduceMeanOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'reduce_mean'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [0, 1], 'keep_dim': False}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'reduce_mean', 'reduce_sum_p', 'fill_constant_p', 'div_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


789 790
if __name__ == '__main__':
    unittest.main()