test_eig_op.py 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
#  Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
import unittest
from paddle.fluid.op import Operator
from paddle.fluid import compiler, Program, program_guard


# cast output to complex for numpy.linalg.eig
def cast_to_complex(input, output):
    if (input.dtype == np.float32):
        output = output.astype(np.complex64)
    elif (input.dtype == np.float64):
        output = output.astype(np.complex128)
    return output


# define eig backward function for a single square matrix
def eig_backward(w, v, grad_w, grad_v):
    v_tran = np.transpose(v)
    v_tran = np.conjugate(v_tran)
    w_conj = np.conjugate(w)
    w_conj_l = w_conj.reshape(1, w.size)
    w_conj_r = w_conj.reshape(w.size, 1)
    w_conj_2d = w_conj_l - w_conj_r

    vhgv = np.matmul(v_tran, grad_v)
    real_vhgv = np.real(vhgv)
    diag_real = real_vhgv.diagonal()

    diag_2d = diag_real.reshape(1, w.size)
    rhs = v * diag_2d
    mid = np.matmul(v_tran, rhs)
    result = vhgv - mid

    res = np.divide(result, w_conj_2d)
    row, col = np.diag_indices_from(res)
    res[row, col] = 1.0

    tmp = np.matmul(res, v_tran)
    dx = np.linalg.solve(v_tran, tmp)
    return dx


class TestEigOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        paddle.device.set_device("cpu")
        self.op_type = "eig"
        self.__class__.op_type = self.op_type
        self.init_input()
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Eigenvalues': self.out[0], 'Eigenvectors': self.out[1]}

    def init_input(self):
        self.set_dtype()
        self.set_dims()
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.out = np.linalg.eig(self.x)
        self.out = (cast_to_complex(self.x, self.out[0]),
                    cast_to_complex(self.x, self.out[1]))

    # for the real input, a customized checker is needed
    def checker(self, outs):
        actual_out_w = outs[0].flatten()
        expect_out_w = self.out[0].flatten()
        actual_out_v = outs[1].flatten()
        expect_out_v = self.out[1].flatten()

        length_w = len(expect_out_w)
        act_w_real = np.sort(
            np.array([np.abs(actual_out_w[i].real) for i in range(length_w)]))
        act_w_imag = np.sort(
            np.array([np.abs(actual_out_w[i].imag) for i in range(length_w)]))
        exp_w_real = np.sort(
            np.array([np.abs(expect_out_w[i].real) for i in range(length_w)]))
        exp_w_imag = np.sort(
            np.array([np.abs(expect_out_w[i].imag) for i in range(length_w)]))

        for i in range(length_w):
            self.assertTrue(
                np.allclose(act_w_real[i], exp_w_real[i], 1e-6, 1e-5),
                "The eigenvalues real part have diff: \nExpected " +
                str(act_w_real[i]) + "\n" + "But got: " + str(exp_w_real[i]))
            self.assertTrue(
                np.allclose(act_w_imag[i], exp_w_imag[i], 1e-6, 1e-5),
                "The eigenvalues image part have diff: \nExpected " +
                str(act_w_imag[i]) + "\n" + "But got: " + str(exp_w_imag[i]))

        length_v = len(expect_out_v)
        act_v_real = np.sort(
            np.array([np.abs(actual_out_v[i].real) for i in range(length_v)]))
        act_v_imag = np.sort(
            np.array([np.abs(actual_out_v[i].imag) for i in range(length_v)]))
        exp_v_real = np.sort(
            np.array([np.abs(expect_out_v[i].real) for i in range(length_v)]))
        exp_v_imag = np.sort(
            np.array([np.abs(expect_out_v[i].imag) for i in range(length_v)]))

        for i in range(length_v):
            self.assertTrue(
                np.allclose(act_v_real[i], exp_v_real[i], 1e-6, 1e-5),
                "The eigenvectors real part have diff: \nExpected " +
                str(act_v_real[i]) + "\n" + "But got: " + str(exp_v_real[i]))
            self.assertTrue(
                np.allclose(act_v_imag[i], exp_v_imag[i], 1e-6, 1e-5),
                "The eigenvectors image part have diff: \nExpected " +
                str(act_v_imag[i]) + "\n" + "But got: " + str(exp_v_imag[i]))

    def set_dtype(self):
        self.dtype = np.complex64

    def set_dims(self):
        self.shape = (10, 10)

    def init_grad(self):
        # grad_w, grad_v complex dtype
        gtype = self.dtype
        if self.dtype == np.float32:
            gtype = np.complex64
        elif self.dtype == np.float64:
            gtype = np.complex128
        self.grad_w = np.ones(self.out[0].shape, gtype)
        self.grad_v = np.ones(self.out[1].shape, gtype)
        self.grad_x = eig_backward(self.out[0], self.out[1], self.grad_w,
                                   self.grad_v)

    def test_check_output(self):
        self.check_output_with_place_customized(
            checker=self.checker, place=core.CPUPlace())

    def test_check_grad(self):
        self.init_grad()
        self.check_grad(
            ['X'], ['Eigenvalues', 'Eigenvectors'],
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_w, self.grad_v])


class TestComplex128(TestEigOp):
    def set_dtype(self):
        self.dtype = np.complex128


@skip_check_grad_ci(
    reason="For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
)
class TestDouble(TestEigOp):
    def set_dtype(self):
        self.dtype = np.float64

    def test_check_grad(self):
        pass


@skip_check_grad_ci(
    reason="For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
)
class TestEigBatchMarices(TestEigOp):
    def set_dtype(self):
        self.dtype = np.float64

    def set_dims(self):
        self.shape = (3, 10, 10)

    def test_check_grad(self):
        pass


@skip_check_grad_ci(
    reason="For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
)
class TestFloat(TestEigOp):
    def set_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        pass


class TestEigStatic(TestEigOp):
    def test_check_output_with_place(self):
        paddle.enable_static()
        place = core.CPUPlace()
        input_np = np.random.random([3, 3]).astype('complex')
        expect_val, expect_vec = np.linalg.eig(input_np)
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[3, 3], dtype='complex')
            act_val, act_vec = paddle.linalg.eig(input)

            exe = fluid.Executor(place)
            fetch_val, fetch_vec = exe.run(fluid.default_main_program(),
                                           feed={"input": input_np},
                                           fetch_list=[act_val, act_vec])
        self.assertTrue(
            np.allclose(expect_val, fetch_val, 1e-6, 1e-6),
            "The eigen values have diff: \nExpected " + str(expect_val) + "\n" +
            "But got: " + str(fetch_val))
        self.assertTrue(
            np.allclose(np.abs(expect_vec), np.abs(fetch_vec), 1e-6, 1e-6),
            "The eigen vectors have diff: \nExpected " +
            str(np.abs(expect_vec)) + "\n" + "But got: " +
            str(np.abs(fetch_vec)))


class TestEigWrongDimsError(unittest.TestCase):
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = np.random.random((3)).astype('float32')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


class TestEigNotSquareError(unittest.TestCase):
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = np.random.random((1, 2, 3)).astype('float32')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


class TestEigUnsupportedDtypeError(unittest.TestCase):
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = (np.random.random((3, 3)) * 10).astype('int64')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


if __name__ == "__main__":
    unittest.main()