qat.py 22.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
import paddle.nn.quant.quant_layers as quant_layers
24
from paddle.fluid import dygraph, core, framework, unique_name
25
from paddle.fluid.executor import Executor, global_scope
26 27
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
28 29
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
30
from paddle.fluid.log_helper import get_logger
31
from .. import quantization_pass
C
cc 已提交
32
from . import utils
33

C
cc 已提交
34
__all__ = ['ImperativeQuantAware']
35 36 37 38 39 40 41

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class ImperativeQuantAware(object):
    """
42
    Applying quantization aware training (QAT) to the dgraph model.
43 44 45
    """

    def __init__(self,
C
cc 已提交
46
                 quantizable_layer_type=['Conv2D', 'Linear'],
47 48
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
C
cc 已提交
49 50
                 weight_bits=8,
                 activation_bits=8,
51
                 moving_rate=0.9,
52 53 54 55
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
56
        """
57 58 59
        The constructor for ImperativeQuantAware.

        Args:
60 61
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
62
            weight_quantize_type(str): quantization type for weights,
63
                which supports 'abs_max' and 'channel_wise_abs_max'.
64 65
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
66 67 68 69 70
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
71 72
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
92 93 94
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
95 96 97 98 99
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
100 101 102
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
103 104 105
                activation and returns dequantized activation. 
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
106

107
        Note:
C
cc 已提交
108 109 110 111
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
112 113

        Examples 1:
114 115
        .. code-block:: python

116
            import paddle
117 118
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
119
            from paddle.vision.models \
120 121 122 123 124 125 126 127 128 129
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
130
            # The outscale of outputs in supportted layers would be calculated.
131 132 133 134 135 136
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
137
            imperative_qat.save_quantized_model(
138 139 140 141 142
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
186 187
        """
        super(ImperativeQuantAware, self).__init__()
H
huangxu96 已提交
188

C
cc 已提交
189 190 191 192 193 194 195 196 197 198 199
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
200
        }
C
cc 已提交
201 202 203

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

204
        self._quantize_outputs = ImperativeQuantizeOutputs()
205 206 207

    def quantize(self, model):
        """
C
cc 已提交
208 209 210 211 212
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
213 214 215 216 217 218

        Args:
            model(fluid.dygraph.Layer): the model to be quantized.
        Returns:
            None
        """
C
cc 已提交
219 220 221
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
        self._quantize_inputs.apply(model)
222
        self._quantize_outputs.apply(model)
C
cc 已提交
223 224

    def save_quantized_model(self, layer, path, input_spec=None, **config):
225 226
        self._quantize_outputs.save_quantized_model(layer, path, input_spec,
                                                    **config)
C
cc 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

    def __init__(self,
                 quantizable_layer_type=['Conv2D', 'Linear'],
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
        """
        The constructor for ImperativeQuantizeInputs. 

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()

        self._quantizable_layer_type = tuple(
254 255
            utils.layer_name_map[layer]
            if layer in utils.layer_name_map else layer
C
cc 已提交
256 257
            for layer in quantizable_layer_type)
        for layer in self._quantizable_layer_type:
258 259
            assert not isinstance(layer, str) \
                and layer in utils.fake_quant_input_layers, \
C
cc 已提交
260 261 262 263 264
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
265 266
        assert weight_quantize_type != 'moving_average_abs_max' \
            and weight_quantize_type in quantize_type, \
C
cc 已提交
267
            "Unsupported weight_quantize_type: %s. It can only " \
268 269 270
            "be abs_max or channel_wise_abs_max." % weight_quantize_type
        # TODO (jc): activation_quantize_type supports range_abs_max
        assert activation_quantize_type == 'moving_average_abs_max', \
C
cc 已提交
271
            "Unsupported activation_quantize_type: %s. It can " \
272
            "only be moving_average_abs_max now." \
C
cc 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

309 310 311 312
        for name, cur_layer in model.named_sublayers():
            if not isinstance(cur_layer, self._quantizable_layer_type) \
                or (hasattr(cur_layer, "skip_quant") \
                    and cur_layer.skip_quant == True):
313 314
                continue

315 316 317 318 319
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, name)

            cur_quant_layer = self._get_input_quantized_layer(cur_layer)
            setattr(parent_layer, sub_name, cur_quant_layer)
320

321
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
322
        quant_layer_name = None
323 324

        for key, value in utils.layer_name_map.items():
C
cc 已提交
325 326 327 328 329 330
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
331

332
        return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs)
333

334

335 336
class ImperativeQuantizeOutputs(object):
    """
337
    Calculate the output scales for target layers.
338 339
    """

340
    def __init__(self, moving_rate=0.9):
341
        """
342
        The constructor for ImperativeQuantizeOutputs.
343 344

        Args:
C
cc 已提交
345 346
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
347
        """
348
        super(ImperativeQuantizeOutputs, self).__init__()
349 350
        self._moving_rate = moving_rate

C
cc 已提交
351
    def apply(self, model):
352
        """
353 354
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
355 356

        Args:
C
cc 已提交
357
            model(fluid.dygraph.Layer): The target model which would be
358
                calculate the output quantization scale.
359 360 361 362

        Returns:
            None
        """
C
cc 已提交
363 364
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
365

366 367
        for cur_name, cur_layer in model.named_sublayers():
            if not self._is_target_layer(cur_layer):
368 369
                continue

370 371 372 373
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, cur_name)

            if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)):
374
                cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer(
375 376
                    cur_layer, self._moving_rate)
            else:
377 378
                cur_quant_layer = quant_layers.MAOutputScaleLayer(
                    cur_layer, self._moving_rate)
379 380

            setattr(parent_layer, sub_name, cur_quant_layer)
381

382
    def save_quantized_model(self, model, path, input_spec=None, **config):
383 384 385 386
        """
        Save the quantized model for the inference.

        Args:
387
            model (Layer): The model to be saved.
388 389 390 391 392 393 394 395 396 397 398
            path (str): The path prefix to save model. The format is 
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
                InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
399
                The following options are currently supported:
400 401 402 403 404 405
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
                If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given
                ``output_spec`` list. 
406 407 408 409

        Returns:
            None
        """
410
        assert isinstance(model, dygraph.Layer), \
411 412
            "The model must be the instance of dygraph.Layer."

413
        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
414 415

        is_dynamic_mode = False
416 417 418 419
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

420 421
        place = core.CPUPlace()
        scope = global_scope()
422 423 424
        exe = Executor(place)

        dirname = os.path.dirname(path)
425 426 427
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
428 429

        [infer_program, feed_target_names, fetch_targets] = (
430 431 432 433 434 435
            load_inference_model(
                dirname=dirname,
                executor=exe,
                model_filename=model_filename,
                params_filename=params_filename))

436
        self._gather_scales(infer_program, scope)
437 438

        self._set_skip_quant_attr(infer_program)
G
guofei 已提交
439

440 441 442 443 444
        save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
445
            main_program=infer_program.clone(),
446 447 448
            model_filename=model_filename,
            params_filename=params_filename)

449 450 451
        if is_dynamic_mode:
            paddle.disable_static()

452
    def _is_target_layer(self, layer):
453
        """
454
        Whether the layer needs to calculate output scales.
455
        """
456 457
        flag = False
        if isinstance(layer, dygraph.Layer):
458
            # exclude fake_quant ops in quant_layers file
459 460 461
            if utils.is_leaf_layer(layer) and \
                not isinstance(layer, tuple(utils.fake_quant_leaf_layers)):
                flag = True
462

463 464
            if isinstance(layer, tuple(utils.fake_quant_wrap_layers)):
                flag = True
465 466 467 468

            if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer):
                flag = True

469
        return flag
C
cc 已提交
470

471
    def _gather_scales(self, program, scope):
472
        """
473 474
        Get all scales from fake ops, save them into the corresponding ops
        and delete all moving_average_abs_max_scale ops. 
475
        """
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

        def _gather_input_scale():
            target_ops = []
            skip_ops = utils.fake_quantize_dequantize_op_types + \
                ["moving_average_abs_max_scale"]
            for block in program.blocks:
                for op in block.ops:
                    if op.type not in skip_ops:
                        target_ops.append(op)

            for op in target_ops:
                for in_var_name in utils._get_op_input_var_names(op):
                    previous_op = utils.find_previous_op(op.block, in_var_name)

                    if previous_op is not None and \
                        ("quantize_dequantize" in previous_op.type or \
                        previous_op.type == "moving_average_abs_max_scale"):
                        scale_name = previous_op.output('OutScale')[0]
                        in_scale = utils.load_variable_data(scope, scale_name)
                        in_scale = utils.fp_numpy_to_naive(in_scale)
                        argname, index = utils._get_input_name_index(
                            op, in_var_name)
                        op._set_attr(argname + str(index) + "_threshold",
                                     in_scale)

        def _gather_output_scale():
            target_ops = []
            for block in program.blocks:
                for op in block.ops:
                    if op.type == "moving_average_abs_max_scale":
                        target_ops.append(op)

            for op in target_ops:
                in_var_name = op.input('X')[0]
                out_var_name = op.output('Out')[0]
                block = op.block
                previous_op = utils.find_previous_op(block, in_var_name)
                next_ops = utils.find_next_ops(block, out_var_name)

                out_scale_name = op.output('OutScale')[0]
                out_scale = utils.load_variable_data(scope, out_scale_name)
                out_scale = utils.fp_numpy_to_naive(out_scale)

                if previous_op.type != "feed":
                    argname, index = utils._get_output_name_index(previous_op,
                                                                  in_var_name)
                    previous_op._set_attr(argname + str(index) + "_threshold",
                                          out_scale)
                    previous_op._set_attr("out_threshold", out_scale)

                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)

        _gather_input_scale()
        _gather_output_scale()
C
cc 已提交
531

532
    def _set_skip_quant_attr(self, program):
533
        """
534
        Label the skip quantized ops.
535
        """
536 537 538 539
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
G
guofei 已提交
540 541 542 543 544 545 546 547 548 549 550

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
        target_op_types = ["conv2d", "depthwise_conv2d", "matmul"]
        if in_op.type not in target_op_types:
            return False

551
        previous_ops = [utils.find_previous_op(block, arg_name) \
G
guofei 已提交
552
            for arg_name in in_op.input_arg_names]
553
        return any(op is not None and op.type not in \
554
            utils.fake_quantize_dequantize_op_types for op in previous_ops)