test_conv2d_op.py 47.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
D
dzhwinter 已提交
19

20
import paddle.fluid.core as core
L
liym27 已提交
21
import paddle.fluid as fluid
22 23
from op_test import OpTest
from paddle.fluid import Program, program_guard
24 25


L
liym27 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
def conv2d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format='NCHW'):
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCHW' or 'NHWC'." % str(data_format))

    channel_last = (data_format == "NHWC")
    if channel_last:
        input = np.transpose(input, [0, 3, 1, 2])

C
chengduoZH 已提交
45
    in_n, in_c, in_h, in_w = input.shape
L
liym27 已提交
46 47 48
    f_n, f_c, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
C
chengduoZH 已提交
49 50
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
51
    sub_out_c = out_c // group
L
liym27 已提交
52
    sub_f_n = f_n // group
C
chengduoZH 已提交
53

C
chengduoZH 已提交
54 55
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
L
liym27 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1]
76
        input_data_shape = input.shape[2:4]
L
liym27 已提交
77 78 79 80 81 82 83 84 85 86 87 88
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
                                             (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
                                             (f_w - 1) + 1)) // stride[1]
    out = np.zeros((out_n, out_c, out_h, out_w))
C
chengduoZH 已提交
89

武毅 已提交
90 91
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
92

L
liym27 已提交
93 94
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
                               (pad_w_0, pad_w_1)),
C
chengduoZH 已提交
95 96
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
97

L
liym27 已提交
98
    filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
99 100 101
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
102 103 104
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
105 106
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
107 108
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
109

L
liym27 已提交
110 111
                f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
                # sub_f_n == sub_out_c
C
chengduoZH 已提交
112
                for k in range(sub_out_c):
L
liym27 已提交
113
                    # Multiplication of Corresponding Elements, then sum all
C
chengduoZH 已提交
114 115 116
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
117

L
liym27 已提交
118 119 120
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 1])

121
    return out, in_n, out_h, out_w, out_c
C
chengduoZH 已提交
122 123


L
liym27 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_cudnn_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConv2DCUDNNFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
154
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
L
liym27 已提交
155 156 157 158 159

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
160
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
L
liym27 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
    TestConv2DCUDNNFp16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNFp16


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
def create_test_cudnn_channel_last_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
218
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
219 220 221 222 223

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
224
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
225 226 227 228 229 230 231 232 233 234 235 236 237

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLastFp16")
    TestCudnnChannelLastFp16.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastFp16


L
liym27 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
292
class TestConv2DOp(OpTest):
293
    def setUp(self):
K
Kexin Zhao 已提交
294
        self.op_type = "conv2d"
295
        self.use_cudnn = False
296
        self.exhaustive_search = False
297
        self.use_cuda = False
298
        self.use_mkldnn = False
299
        self.fuse_relu_before_depthwise_conv = False
300
        self.data_format = "AnyLayout"
301 302
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
303
        self.init_kernel_type()
C
chengduoZH 已提交
304
        self.init_group()
C
chengduoZH 已提交
305
        self.init_dilation()
C
chengduoZH 已提交
306
        self.init_test_case()
C
chengduoZH 已提交
307

C
chengduoZH 已提交
308 309 310 311 312
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
313

K
Kexin Zhao 已提交
314
        input = np.random.random(self.input_size).astype(self.dtype)
G
guomingz 已提交
315
        if not self.has_cuda():
316 317 318 319 320 321 322 323
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
G
guomingz 已提交
324
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
L
liym27 已提交
325

326
        output, _, _, _, _ = conv2d_forward_naive(input2, filter, self.groups,
327 328
                                                  conv2d_param)
        output = output.astype(self.dtype)
K
Kexin Zhao 已提交
329 330

        self.inputs = {
K
Kexin Zhao 已提交
331 332
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
K
Kexin Zhao 已提交
333
        }
H
hedaoyuan 已提交
334
        self.attrs = {
C
chengduoZH 已提交
335 336
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
337
            'groups': self.groups,
338
            'dilations': self.dilations,
339
            'use_cudnn': self.use_cudnn,
340
            'use_mkldnn': self.use_mkldnn,
341
            'data_format': self.data_format,
342 343
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
344
            'exhaustive_search': self.exhaustive_search
H
hedaoyuan 已提交
345
        }
346 347
        self.outputs = {'Output': output}

G
guomingz 已提交
348
    def has_cuda(self):
349 350
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)
351

H
hedaoyuan 已提交
352
    def test_check_output(self):
G
guomingz 已提交
353
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
354 355 356
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
357

H
hedaoyuan 已提交
358
    def test_check_grad(self):
359 360
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
361
            return
G
guomingz 已提交
362
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
363
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
364
        self.check_grad_with_place(
365 366 367 368
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
369

370
    def test_check_grad_no_filter(self):
371 372
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
373
            return
G
guomingz 已提交
374
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
375
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
376 377 378 379
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
380 381
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
382 383

    def test_check_grad_no_input(self):
384 385
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
386
            return
G
guomingz 已提交
387
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
388
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
389 390 391
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
392 393
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
394

C
chengduoZH 已提交
395 396 397 398 399
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
400
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
401 402
        self.filter_size = [6, f_c, 3, 3]

L
liym27 已提交
403 404 405
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
406 407 408
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
409
    def init_group(self):
H
hedaoyuan 已提交
410 411
        self.groups = 1

K
Kexin Zhao 已提交
412 413
    def init_kernel_type(self):
        pass
武毅 已提交
414

H
hedaoyuan 已提交
415

C
cnn 已提交
416
class TestWithPad(TestConv2DOp):
C
chengduoZH 已提交
417 418 419 420 421
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
422
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
423 424 425
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
426
class TestWithStride(TestConv2DOp):
C
chengduoZH 已提交
427 428 429 430 431
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
432
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
433 434 435
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
436
class TestWithGroup(TestConv2DOp):
Z
zhupengyang 已提交
437 438 439 440 441 442 443 444
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [18, f_c, 3, 3]
H
hedaoyuan 已提交
445

武毅 已提交
446

C
cnn 已提交
447
class TestWith1x1(TestConv2DOp):
C
chengduoZH 已提交
448 449 450 451 452
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
453
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
454
        self.filter_size = [120, f_c, 1, 1]
C
chengduoZH 已提交
455 456 457 458 459

    def init_group(self):
        self.groups = 3


C
cnn 已提交
460
class TestWithDepthWise3x3(TestConv2DOp):
461 462 463 464 465 466
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
467
        self.filter_size = [12, f_c, 3, 3]
468 469 470 471 472 473 474 475

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
476
class TestWithDepthWise5x5(TestConv2DOp):
477 478 479 480 481 482 483 484 485 486 487 488
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
489
class TestWithDepthWise7x7(TestConv2DOp):
490 491 492 493 494 495 496 497 498 499 500 501
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8


C
cnn 已提交
502
class TestWithDilation(TestConv2DOp):
C
chengduoZH 已提交
503 504 505 506 507
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
508
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
509
        self.filter_size = [12, f_c, 3, 3]
C
chengduoZH 已提交
510

C
chengduoZH 已提交
511 512
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
513

C
chengduoZH 已提交
514
    def init_group(self):
C
chengduoZH 已提交
515
        self.groups = 3
武毅 已提交
516

C
chengduoZH 已提交
517

C
cnn 已提交
518
class TestWithInput1x1Filter1x1(TestConv2DOp):
519 520 521
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
Z
zhupengyang 已提交
522
        self.input_size = [100, 3, 1, 1]  # NCHW
523
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
524
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
525
        self.filter_size = [120, f_c, 1, 1]
526 527 528 529 530

    def init_group(self):
        self.groups = 3


C
cnn 已提交
531
#----------------Conv2DCUDNN----------------
C
chengduoZH 已提交
532

C
cnn 已提交
533
create_test_cudnn_class(TestConv2DOp)
C
chengduo 已提交
534 535 536 537 538
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
K
Kexin Zhao 已提交
539

C
cnn 已提交
540
#----------------Conv2DCUDNN fp16----------------
C
chengduo 已提交
541

C
cnn 已提交
542
create_test_cudnn_fp16_class(TestConv2DOp, grad_check=False)
C
chengduo 已提交
543 544 545 546 547
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
C
chengduo 已提交
548

L
liym27 已提交
549
#----------------TestDepthwiseConv -----
K
Kexin Zhao 已提交
550 551


C
cnn 已提交
552
class TestDepthwiseConv(TestConv2DOp):
553
    def init_test_case(self):
554
        self.use_cuda = True
555 556 557 558 559
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
560
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
561
        self.filter_size = [12, f_c, 3, 3]
562
        self.op_type = "depthwise_conv2d"
563 564


C
cnn 已提交
565
class TestDepthwiseConv2(TestConv2DOp):
566
    def init_test_case(self):
567 568 569 570 571 572 573
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
574
        self.filter_size = [12, f_c, 3, 3]
575 576 577
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
578
class TestDepthwiseConv3(TestConv2DOp):
579 580
    def init_test_case(self):
        self.use_cuda = True
581 582 583 584 585
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
586
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
587
        self.filter_size = [24, f_c, 3, 3]
588
        self.op_type = "depthwise_conv2d"
589 590


C
cnn 已提交
591
class TestDepthwiseConvWithDilation(TestConv2DOp):
592 593 594 595 596 597 598 599 600
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
601
        self.filter_size = [24, f_c, 3, 3]
602 603 604
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
605
class TestDepthwiseConvWithDilation2(TestConv2DOp):
606 607 608 609 610 611 612 613 614
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
615
        self.filter_size = [24, f_c, 3, 3]
616 617 618
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
619
class TestDepthwiseConvandFuse(TestConv2DOp):
620 621 622 623 624 625 626 627 628
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
629
        self.filter_size = [12, f_c, 3, 3]
630 631 632
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
633
class TestDepthwiseConv2andFuse(TestConv2DOp):
634 635 636 637 638 639 640 641 642
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
643
        self.filter_size = [12, f_c, 3, 3]
644 645 646
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
647
class TestDepthwiseConv3andFuse(TestConv2DOp):
648 649 650 651 652 653 654 655 656
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
657
        self.filter_size = [24, f_c, 3, 3]
658 659 660
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
661
class TestDepthwiseConvWithDilationandFuse(TestConv2DOp):
662 663 664 665 666 667 668 669 670 671
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
672
        self.filter_size = [24, f_c, 3, 3]
673 674 675
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
676
class TestDepthwiseConvWithDilation2andFuse(TestConv2DOp):
677 678 679 680 681 682 683 684 685 686
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
687
        self.filter_size = [24, f_c, 3, 3]
688 689 690
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
691
class TestCUDNNExhaustiveSearch(TestConv2DOp):
692 693 694 695 696
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True


C
cnn 已提交
697
class TestConv2DOpError(unittest.TestCase):
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of conv2d must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.conv2d(x1, 1, 1)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of conv2d must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.conv2d(x2, 1, 1)

            self.assertRaises(TypeError, test_dtype)


719 720
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
721
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
722 723 724
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

L
liym27 已提交
725 726 727
# ---- test asymmetric padding ----


C
cnn 已提交
728
class TestConv2DOp_v2(OpTest):
L
liym27 已提交
729 730 731 732 733 734 735
    def setUp(self):
        self.op_type = "conv2d"
        self.use_cudnn = False
        self.exhaustive_search = False
        self.use_cuda = False
        self.use_mkldnn = False
        self.fuse_relu_before_depthwise_conv = False
736 737
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()
        self.init_test_case_2()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        if not self.has_cuda():
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
        output, _, _, _, _ = conv2d_forward_naive(
            input2, filter, self.groups, conv2d_param, self.padding_algorithm,
            self.data_format)
        output = output.astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format,
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
            'exhaustive_search': self.exhaustive_search
        }
        self.outputs = {'Output': output}

    def has_cuda(self):
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)

    def test_check_output(self):
792
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
793
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
794 795
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
796 797

    def test_check_grad(self):
798
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
799 800 801 802
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
803 804 805 806
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
807 808

    def test_check_grad_no_filter(self):
809
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
810 811 812 813 814 815 816
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
817 818
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
819 820

    def test_check_grad_no_input(self):
821
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
822 823 824 825 826 827
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
828 829
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
830 831 832

    def init_test_case(self):
        self.pad = [0, 0]
833
        self.stride = [1, 2]
L
liym27 已提交
834 835 836
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
837
        self.filter_size = [6, f_c, 4, 3]
L
liym27 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCHW"

    def init_test_case_2(self):
        pass


C
cnn 已提交
859
class TestConv2DOp_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
860 861 862 863 864
    def init_paddings(self):
        self.pad = [0, 0, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
865
class TestWithPad_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
866 867 868 869 870 871 872 873 874 875 876 877
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
878
class TestWithStride_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
879 880 881 882 883 884 885 886 887 888 889 890
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
891
class TestWithGroup_AsyPadding(TestConv2DOp_v2):
Z
zhupengyang 已提交
892 893 894 895 896 897 898 899
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [24, f_c, 4, 3]
L
liym27 已提交
900 901


C
cnn 已提交
902
class TestWith1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
903 904 905 906 907
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
908
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
909 910 911 912 913 914 915 916 917

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [2, 2, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
918
class TestWithDepthWise3x3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
919 920 921 922 923
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
924
        self.filter_size = [16, f_c, 3, 3]
L
liym27 已提交
925 926 927 928 929 930 931 932 933 934 935 936

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [1, 3, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
937
class TestWithDepthWise5x5_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
953
class TestWithDepthWise7x7_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8

    def init_paddings(self):
        self.pad = [1, 3, 4, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
969
class TestWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
970 971 972 973 974
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
975
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
976 977 978 979 980 981 982 983 984 985 986 987

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 1, 3, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
988
class TestWithInput1x1Filter1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
989 990
    def init_test_case(self):
        self.stride = [1, 1]
Z
zhupengyang 已提交
991
        self.input_size = [40, 3, 1, 1]  # NCHW
L
liym27 已提交
992 993
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
994
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
995 996 997 998 999 1000 1001 1002 1003

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 3, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1004
create_test_cudnn_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1005 1006 1007 1008 1009 1010 1011
create_test_cudnn_class(TestWithPad_AsyPadding)
create_test_cudnn_class(TestWithStride_AsyPadding)
create_test_cudnn_class(TestWithGroup_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithInput1x1Filter1x1_AsyPadding)


C
cnn 已提交
1012
class TestDepthwiseConv_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1013 1014 1015 1016 1017 1018 1019
    def init_test_case(self):
        self.use_cuda = True
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1020
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1021 1022 1023 1024 1025 1026 1027
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 0, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1028
class TestDepthwiseConv2_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1029 1030 1031 1032 1033 1034 1035
    def init_test_case(self):
        self.use_cuda = True
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1036
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1037 1038 1039 1040 1041 1042 1043
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [0, 1, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1044
class TestDepthwiseConv3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1045 1046 1047 1048 1049 1050 1051
    def init_test_case(self):
        self.use_cuda = True
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1052
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1053 1054 1055 1056 1057 1058 1059
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 0, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1060
class TestDepthwiseConvWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1070
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1071 1072 1073 1074 1075 1076 1077
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1078
class TestDepthwiseConvWithDilation2_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1088
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1089 1090 1091 1092 1093 1094 1095
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1096
class TestDepthwiseConvandFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1106
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1107 1108 1109 1110 1111 1112 1113
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [2, 1, 2, 3]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1114
class TestDepthwiseConv2andFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1124
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1125 1126 1127 1128 1129 1130 1131
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1132
class TestDepthwiseConv3andFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1142
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1143 1144 1145 1146 1147 1148 1149
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 2, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1150
class TestDepthwiseConvWithDilationandFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1161
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1162 1163 1164 1165 1166 1167 1168
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [2, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1169
class TestDepthwiseConvWithDilation2andFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1180
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1181 1182 1183 1184 1185 1186 1187 1188
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 3, 1, 3]
        self.padding_algorithm = "EXPLICIT"


#---------- test SAME VALID -----------
C
cnn 已提交
1189
create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1190 1191 1192 1193 1194
create_test_padding_SAME_class(TestWithPad_AsyPadding)
create_test_padding_SAME_class(TestWithStride_AsyPadding)
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
1195
create_test_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1196 1197 1198 1199 1200
create_test_padding_VALID_class(TestWithPad_AsyPadding)
create_test_padding_VALID_class(TestWithStride_AsyPadding)
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
1201
create_test_cudnn_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1202 1203 1204 1205 1206
create_test_cudnn_padding_SAME_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
1207
create_test_cudnn_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
create_test_cudnn_padding_VALID_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

# depthwise conv2d

create_test_padding_SAME_class(TestDepthwiseConv_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvWithDilation_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)

create_test_padding_VALID_class(TestDepthwiseConv_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvWithDilation_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)

# ------------ test channel last ---------
C
cnn 已提交
1226
create_test_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
create_test_channel_last_class(TestWithPad_AsyPadding)
create_test_channel_last_class(TestWithGroup_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)

create_test_channel_last_class(TestDepthwiseConv_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvWithDilation2_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)

C
cnn 已提交
1237
create_test_cudnn_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1238 1239 1240 1241 1242
create_test_cudnn_channel_last_class(TestWithPad_AsyPadding)
create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup_AsyPadding)
create_test_cudnn_channel_last_class(TestWithDilation_AsyPadding)

1243
create_test_cudnn_channel_last_fp16_class(
C
cnn 已提交
1244
    TestConv2DOp_AsyPadding, grad_check=False)
1245 1246 1247 1248 1249 1250 1251 1252 1253
create_test_cudnn_channel_last_fp16_class(
    TestWithPad_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithStride_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithGroup_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithDilation_AsyPadding, grad_check=False)

L
liym27 已提交
1254 1255

# --------- test python API ---------------
C
cnn 已提交
1256
class TestConv2DAPI(unittest.TestCase):
L
liym27 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    def test_api(self):

        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32")

        fluid.layers.conv2d(
            input=input_NHWC,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=0,
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=[1, 2, 1, 0],
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=[[0, 0], [0, 0], [1, 1], [1, 1]],
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NHWC,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            dilation=[1, 1],
            groups=1,
            data_format="NHWC")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding="SAME",
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding="VALID",
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")


C
cnn 已提交
1332
class TestConv2DAPI_Error(unittest.TestCase):
L
liym27 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
    def test_api(self):
        input = fluid.layers.data(
            name="input",
            shape=[2, 5, 5, 5],
            append_batch_size=False,
            dtype="float32")

        # ValueError: cudnn
        def run_1():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=1,
                use_cudnn=[0],
                data_format="NCHW")

        self.assertRaises(ValueError, run_1)

        # ValueError: data_format
        def run_2():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHWC")

        self.assertRaises(ValueError, run_2)

        # ValueError: padding
        def run_3():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding="SAMEE",
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHW")

        self.assertRaises(ValueError, run_3)

        def run_4():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHW")

        self.assertRaises(ValueError, run_4)

        def run_5():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_5)

        # ValueError: channel dimmention
        x = fluid.layers.data(
            name="x",
            shape=[2, 5, 5, -1],
            append_batch_size=False,
            dtype="float32")

        def run_6():
            fluid.layers.conv2d(
                input=x,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_6)

        # ValueError: groups
        def run_7():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=3,
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_7)


1450 1451
if __name__ == '__main__':
    unittest.main()