dense_tensor.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/core/dense_tensor.h"

namespace pten {

DenseTensor::DenseTensor(const std::shared_ptr<Allocator>& a,
                         const DenseTensorMeta& meta)
    : meta_(meta),
      storage_(
          make_intrusive<TensorStorage>(a, SizeOf(data_type()) * numel())) {}

DenseTensor::DenseTensor(const std::shared_ptr<Allocator>& a,
                         DenseTensorMeta&& meta)
    : meta_(std::move(meta)),
      storage_(
          make_intrusive<TensorStorage>(a, SizeOf(data_type()) * numel())) {}

DenseTensor::DenseTensor(intrusive_ptr<Storage> storage,
                         const DenseTensorMeta& meta)
    : meta_(meta), storage_(std::move(storage)) {}

DenseTensor::DenseTensor(intrusive_ptr<Storage> storage, DenseTensorMeta&& meta)
    : meta_(std::move(meta)), storage_(std::move(storage)) {}

int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
  return storage_.get() == b.storage_.get() && storage_.get() != nullptr;
}

void* DenseTensor::mutable_data(size_t request_bytes) {
  PADDLE_ENFORCE(
      valid(),
      paddle::platform::errors::PreconditionNotMet(
          "The meta data must be valid when call the mutable data function."));
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
  size_t bytes = numel() * SizeOf(data_type());
  if (request_bytes) {
    PADDLE_ENFORCE_GE(request_bytes,
                      bytes,
                      paddle::platform::errors::InvalidArgument(
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          request_bytes,
                          bytes));
    bytes = request_bytes;
  }
  if (storage_->size() < bytes) {
    storage_->Realloc(bytes);
  }
  return storage_->data();
}

template <typename T>
T* DenseTensor::mutable_data() {
  PADDLE_ENFORCE(
      (data_type() == paddle::experimental::CppTypeToDataType<T>::Type()),
79
      paddle::platform::errors::InvalidArgument(
80 81 82 83 84 85 86 87 88 89 90
          "The type of data (%d) we are trying to retrieve does not match the "
          "type of data currently contained in the container (%d).",
          static_cast<int>(paddle::experimental::CppTypeToDataType<T>::Type()),
          static_cast<int>(data_type())));
  return static_cast<T*>(mutable_data());
}

template <typename T>
const T* DenseTensor::data() const {
  PADDLE_ENFORCE(
      (data_type() == paddle::experimental::CppTypeToDataType<T>::Type()),
91
      paddle::platform::errors::InvalidArgument(
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  return static_cast<const T*>(data());
}

const void* DenseTensor::data() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
  return storage_->data();
}

void DenseTensor::check_memory_size() const {
  size_t bytes = numel() * SizeOf(data_type());
  PADDLE_ENFORCE_GE(memory_size(),
                    bytes,
                    paddle::platform::errors::InvalidArgument(
                        "The memory size %d should be enough to meet the "
                        "volume required by metadata %d.",
                        memory_size(),
                        bytes));
}

石晓伟 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129
void DenseTensor::Resize(const DDim& dims) {
  if (product(dims) == product(meta_.dims)) {
    set_dims(dims);
  } else {
    meta_.dims = dims;
    storage_->Clear();
  }
}

void DenseTensor::set_dims(const DDim& dims) {
  CHECK(product(dims) == product(meta_.dims));
  meta_.dims = dims;
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)  \
  template dtype* DenseTensor::mutable_data(); \
  template const dtype* DenseTensor::data() const;

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::float16);
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex64);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128);

#undef DATA_MEMBER_FUNC_INSTANTIATION

}  // namespace pten