raw_program_optimizer.py 15.3 KB
Newer Older
1
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from __future__ import print_function
from __future__ import division
import os
17 18
import collections
import numpy as np
19 20 21

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
22
from paddle.fluid.dygraph import Layer, LayerList
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
from ..base.private_helper_function import wait_server_ready
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_loss_grad_op, is_backward_op, is_optimizer_op


class RawProgramOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(RawProgramOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self.global_ring_id = 0

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(RawProgramOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
        self.without_graph_optimization = user_defined_strategy.without_graph_optimization
44 45 46
        self.fuse_all_reduce_ops = user_defined_strategy.fuse_all_reduce_ops
        if self.fuse_all_reduce_ops:
            self.fuse_grad_size_in_num = user_defined_strategy.fuse_grad_size_in_num
47
            self.calc_comm_same_stream = user_defined_strategy._calc_comm_same_stream
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False

        if self.without_graph_optimization == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.without_graph_optimization = False

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.without_graph_optimization = True

    def _broadcast_params(self, ring_id):
        block = self.startup_program.global_block()
        param = None
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        if not param: return  # no parameter on this device
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})

    def _get_process_group_info(self):
        # global ring info
        self.global_endpoints = self.endpoints
        self.global_rank = self.rank
        self.global_nranks = self.nranks

    def _init_process_group(self):
        self._get_process_group_info()
        collective_helper = CollectiveHelper(self.role_maker, wait_port=False)
        # Create global ring for all gpus (ring_id = 0)
        collective_helper._init_communicator(
            self.startup_program, self.current_endpoint, self.global_endpoints,
            self.global_rank, self.global_ring_id, True, self.global_ring_id,
            True)
        self._broadcast_params(self.global_ring_id)

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.role_maker._worker_index()]
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
        if startup_program is None:
            startup_program = fluid.default_startup_program()
        self.startup_program = startup_program

        block = loss.block
        program = block.program
        self.main_program = program

        optimize_ops, params_grads = self.inner_opt.minimize(
            loss, startup_program, parameter_list, no_grad_set)
李季 已提交
123 124
        if self.nranks == 1:
            return optimize_ops, params_grads
125 126 127 128 129 130 131 132 133
        self._init_process_group()

        self.main_program = program
        if self.nranks > 1:
            self._transpile_main_program(loss)
        return optimize_ops, params_grads

    def _transpile_main_program(self, loss):
        self._insert_loss_grad_ops(loss)
134
        if self.fuse_all_reduce_ops and self.fuse_grad_size_in_num > 1:
135 136 137
            self._allreduce_fusion_program()
        else:
            self._insert_allreduce_ops()
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    def _insert_loss_grad_ops(self, loss):
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / self.nranks,
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
        ring_id = self.global_ring_id
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
                    OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.attr(OP_ROLE_VAR_KEY)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                offset = 1
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    param = block.var(param_name)
                    grad_name = op_role_var[i + 1]
                    grad = block.var(grad_name)
                    if param.is_distributed:
                        continue

                    block._insert_op(
                        idx + offset,
                        type='c_sync_calc_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={OP_ROLE_KEY: OpRole.Backward, })
                    offset += 1
                    block._insert_op(
                        idx + offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if is_optimizer_op(op):
                block._insert_op(
                    idx,
                    type='c_sync_comm_stream',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
                break
208

209 210 211 212 213 214 215
    # This function helps reduce the number of allreduce by integrating op, which can save communication time.
    # to use allreduce fuse, follow these codes:
    # strategy = paddle.distributed.fleet.DistributedStrategy()
    # strategy.without_graph_optimization = True
    # strategy.fuse_all_reduce_ops = True
    # strategy.calc_comm_same_stream = False
    # strategy.fuse_grad_size_in_num = 8
216 217 218
    def _allreduce_fusion_program(self):
        block = self.main_program.global_block()
        ring_id = self.global_ring_id
219
        param_grads = []
220
        first_backward_idx = -1
221

222
        # find all grad params
223 224 225 226
        for idx, op in enumerate(block.ops):
            if first_backward_idx == -1 and \
                    is_backward_op(op):
                first_backward_idx = idx
227 228 229 230 231
            if is_backward_op(op) and \
                    OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.attr(OP_ROLE_VAR_KEY)
                if len(op_role_var) == 0:
                    continue
232 233
                assert len(op_role_var) % 2 == 0, "vars need to be one param var followed by one grad var, " \
                                                  "but got odd number of vars"
234 235 236 237 238 239 240
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    param = block.var(param_name)
                    grad_name = op_role_var[i + 1]
                    grad = block.var(grad_name)
                    if param.is_distributed:
                        continue
241 242 243 244
                    param_grads.append((param, grad))

        outputs_name_to_idx = self.__get_ouputs_name_to_idx(first_backward_idx,
                                                            block)
245

246 247 248 249 250
        # structure of grad_param_segments is
        # [([grad0, grad1], [param0, param1]), ([grad2, grad3], [param2, param3])]
        # each entry of the list is a tuple stores the grads segment list and
        # the corresponding params segment list
        grad_param_segments = []
251 252
        last_dtype = None
        # split the grad based on dtype and fused size
253 254 255 256 257 258
        for param, grad in param_grads:
            if len(grad_param_segments) == 0 \
                    or len(grad_param_segments[-1][0]) == self.fuse_grad_size_in_num \
                    or grad.dtype != last_dtype:
                grad_param_segments.append(([grad], [param]))
                last_dtype = grad.dtype
259
            else:
260 261
                grad_param_segments[-1][0].append(grad)
                grad_param_segments[-1][1].append(param)
262

263 264
        if len(grad_param_segments) == 0:
            return
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        fused_vars = [None] * len(grad_param_segments)
        for i in range(len(grad_param_segments) - 1, -1, -1):
            # travers the grad_param_segments in backward
            # not to use reversed since needs the absolute index value
            grad_segment, param_segment = grad_param_segments[i]
            # insert coalesce tensor
            fused_var = block.create_var(
                name=unique_name.generate('FusedOutput_{}'.format(grad_segment[
                    0].name)),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=True)
            fused_vars[i] = fused_var
            after_idx = outputs_name_to_idx[grad_segment[-1]][1]
            block._insert_op_without_sync(
                after_idx + 1,
                type='c_allreduce_sum',
                inputs={'X': fused_var},
                outputs={'Out': fused_var},
                attrs={
                    'ring_id': ring_id,
                    'use_calc_stream': self.calc_comm_same_stream,
                    OP_ROLE_KEY: OpRole.Backward
                })
            if not self.calc_comm_same_stream:
                block._insert_op_without_sync(
                    after_idx + 1,
                    type='c_sync_calc_stream',
                    inputs={'X': fused_var},
                    outputs={'Out': fused_var},
                    attrs={OP_ROLE_KEY: OpRole.Backward})
297

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        # update the outputs_name_to_idx after insertion of sync/allreduce ops
        outputs_name_to_idx = self.__get_ouputs_name_to_idx(first_backward_idx,
                                                            block)
        # the before_idx is not guaranteed sorted, therefore we have to find the
        # topology to insert the coalesce ops
        pos_for_coalesce = {}
        for i in range(len(grad_param_segments) - 1, -1, -1):
            # We separate the insertion of coalesce op and the insertion of sync/allreduce op,
            # since that the coalesce op's insertion may invalidate the outputs_name_to_idx
            grad_segment, param_segment = grad_param_segments[i]
            before_idx = len(block.ops)
            for grad in outputs_name_to_idx:
                before_idx = min(before_idx, outputs_name_to_idx[grad][0])
            pos_for_coalesce[i] = before_idx

        # insert the coalesce op based on the sorted before_idx
        pos_for_coalesce = sorted(
            pos_for_coalesce.items(),
            key=lambda kv: (kv[1], kv[0]),
            reverse=True)
        for i, before_idx in pos_for_coalesce:
            grad_segment, param_segment = grad_param_segments[i]
            fused_var = fused_vars[i]
            block._insert_op_without_sync(
                before_idx,
                type="coalesce_tensor",
                inputs={"Input": param_segment},
                outputs={"Output": grad_segment,
                         "FusedOutput": fused_var},
                attrs={
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grad_segment[0].dtype,
                    OP_ROLE_KEY: OpRole.Backward
                })

        if self.calc_comm_same_stream:
335 336
            block._sync_with_cpp()
            return
337

338 339 340 341 342 343
        # insert the sync comm op
        for idx, op in enumerate(block.ops):
            if is_optimizer_op(op):
                block._insert_op_without_sync(
                    idx,
                    type='c_sync_comm_stream',
344 345
                    inputs={'X': grad_segment[0]},
                    outputs={'Out': grad_segment[0]},
346 347 348 349
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
                break
        block._sync_with_cpp()
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

    def __get_ouputs_name_to_idx(self, first_backward_idx, block):
        # Each item of outputs_name_to_idx is a pair of idx.
        # The first entry of this pair is the idx of the first op generates the grad,
        # which is used to indicate the position to insert coalesce op.
        # The second entry of this pair is the idx of the last op generates the grad,
        # which is used to indicate the position to insert sync and allreduce op.
        outputs_name_to_idx = {}
        for idx in range(first_backward_idx, len(block.ops)):
            op = block.ops[idx]
            if is_optimizer_op(op):
                break
            for name in op.output_arg_names:
                var = block.var(name)
                if not outputs_name_to_idx.get(var):
                    # if the grad only be generated by one op
                    # the first idx and the last ids are identical
                    outputs_name_to_idx[var] = (idx, idx)
                else:
                    outputs_name_to_idx[var] = (outputs_name_to_idx[var][0],
                                                idx)
        return outputs_name_to_idx