operator.cc 26.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <gflags/gflags.h>
D
dzhwinter 已提交
15
#include <glog/logging.h>
Q
Qiao Longfei 已提交
16

17
#include <algorithm>
D
dzhwinter 已提交
18

Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
21
#include "paddle/fluid/framework/lod_tensor.h"
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
25
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
26

D
dzhwinter 已提交
27
DECLARE_bool(benchmark);
C
chengduoZH 已提交
28 29 30
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
31

Q
Qiao Longfei 已提交
32 33 34
namespace paddle {
namespace framework {

35 36 37 38 39 40
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
41

Q
qiaolongfei 已提交
42 43 44 45 46 47 48 49 50 51 52
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

53 54
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
55
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
56 57
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
58 59
  }

M
minqiyang 已提交
60 61
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
62
    if (UNLIKELY(!tensor.IsInitialized())) {
63
      return DDim({-1});
64
    }
M
minqiyang 已提交
65 66 67 68 69 70 71
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
72 73 74 75 76
  } else {
    return DDim({-1});
  }
}

D
dzhwinter 已提交
77 78 79 80 81
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
82

M
minqiyang 已提交
83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
86 87
      return "";
    }
M
minqiyang 已提交
88 89 90 91
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
    return DataTypeToString(
        ToDataType(var->Get<SelectedRows>().value().type()));
D
dzhwinter 已提交
92 93 94 95 96
  } else {
    return "";
  }
}

97 98 99 100 101 102
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
103 104
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
105 106 107 108 109
  }

  return -1;
}

Q
Qiao Longfei 已提交
110 111 112 113 114 115 116 117
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
118 119 120
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
121 122
      return default_lod;
    }
M
minqiyang 已提交
123
    return tensor.lod();
Q
Qiao Longfei 已提交
124 125 126 127 128
  } else {
    return default_lod;
  }
}

129
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
130
  VLOG(10) << "- " << DebugStringEx(&scope);
131 132 133 134 135 136 137 138
  if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA
    PADDLE_THROW("Cannot run operator on place %s", place);
#else
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
#endif
  }
Q
qiaolongfei 已提交
139 140 141 142 143 144
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // For profiling, don't move out of this function because that will result
  // in the failure of multi-GPU profiling.
  platform::RecordEvent record_event(Type(), dev_ctx);
145
  RunImpl(scope, place);
146
  VLOG(10) << "+ " << DebugStringEx(&scope);
147 148
}

149 150 151 152 153 154 155 156
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

157
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
158
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
159
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
160 161
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
162
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
163 164
}

Y
Yu Yang 已提交
165 166
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
167
  auto it = inputs_.find(name);
168 169
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
170
  return it->second;
Y
Yan Chunwei 已提交
171 172
}

173 174 175 176 177 178 179 180
bool OperatorBase::HasOutputs(const std::string& name) const {
  if (outputs_.find(name) != outputs_.end()) {
    return true;
  } else {
    return false;
  }
}

181
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
182
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
183
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
184 185
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
186
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
187 188
}

Y
Yu Yang 已提交
189 190
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
191
  auto it = outputs_.find(name);
192 193
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
194
  return it->second;
Y
Yan Chunwei 已提交
195 196
}

197
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
198
  std::stringstream ss;
Y
Yu Yang 已提交
199
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
200 201
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
202 203 204
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
205
      if (scope) {
206 207 208 209
        int row_size = GetRowSize(*scope, input.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
D
dzhwinter 已提交
210 211
        std::string dtype = GetDtype(*scope, input.second[i]);
        ss << ":" << dtype;
212
        ss << "[" << GetDims(*scope, input.second[i], true) << "]";
Q
Qiao Longfei 已提交
213
        ss << "(" << GetLoD(*scope, input.second[i]) << ")";
214
      }
Y
Yu Yang 已提交
215 216 217
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
218
    }
Y
Yu Yang 已提交
219
    ss << "]";
Y
Yu Yang 已提交
220 221
    ++it;
    if (it != inputs_.end()) {
222 223
      ss << ", ";
    }
Q
Qiao Longfei 已提交
224
  }
Y
Yu Yang 已提交
225
  ss << "}, outputs:{";
Y
Yu Yang 已提交
226 227
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
228 229 230
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
231
      if (scope) {
232 233 234 235
        int row_size = GetRowSize(*scope, output.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
236
        ss << "[" << GetDims(*scope, output.second[i], true) << "]";
Q
Qiao Longfei 已提交
237
        ss << "(" << GetLoD(*scope, output.second[i]) << ")";
238
      }
Y
Yu Yang 已提交
239 240 241
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
242
    }
Y
Yu Yang 已提交
243
    ss << "]";
Y
Yu Yang 已提交
244 245
    ++it;
    if (it != outputs_.end()) {
246 247
      ss << ", ";
    }
Q
Qiao Longfei 已提交
248
  }
Y
Yu Yang 已提交
249
  ss << "}.";
Q
Qiao Longfei 已提交
250 251 252
  return ss.str();
}

Y
Yu Yang 已提交
253
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
254 255
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
256 257
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
258 259
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
260
}
261

Q
qijun 已提交
262 263
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
264
  for (auto& o : inputs_) {
Q
qijun 已提交
265 266 267 268 269 270
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
271 272 273 274 275 276 277 278 279 280
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
281
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
282 283

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
284
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
285 286 287 288 289 290 291 292 293
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
294 295
}

296 297 298
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
299
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
300 301

  for (auto& in : op_info->Proto().inputs()) {
302 303 304 305
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
306 307 308
  }

  for (auto& out : op_info->Proto().outputs()) {
309 310 311 312 313
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

330 331 332 333
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

334
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
335
  if (var->IsType<LoDTensor>()) {
336
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
337
  } else if (var->IsType<SelectedRows>()) {
338
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
339
  } else {
Y
Yang Yang 已提交
340 341
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
342 343 344 345 346
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
347
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
348
  } else if (var->IsType<SelectedRows>()) {
349
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
350
  } else {
Y
Yang Yang 已提交
351 352
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
353 354 355
  }
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

388
template <>
389
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
390
  auto* var = InputVar(name);
391 392
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
393 394 395
}

template <>
396
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
397 398 399 400
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
401 402 403 404 405
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
406 407 408 409
  return res;
}

template <>
410
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
411
  auto var = OutputVar(name);
Q
QI JUN 已提交
412
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
413 414 415
}

template <>
416
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
417 418 419 420
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
421 422
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
423 424
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
425
                                         : GetMutableTensorFromVar(var);
426
                 });
427 428 429
  return res;
}

Y
Yu Yang 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

445 446 447 448 449 450
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
451 452 453
    if (!op_.HasInputs(name)) {
      return false;
    }
454 455 456 457 458
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
459 460
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Input %s should not have more than one inputs", name);
461 462 463 464 465 466
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
467 468 469
    if (!op_.HasOutputs(name)) {
      return false;
    }
470 471 472 473 474
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
475 476
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Output %s should not have more than one inputs", name);
477 478 479 480 481 482
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
483 484 485
    if (!op_.HasInputs(name)) {
      return false;
    }
486 487 488 489 490 491 492 493 494 495 496 497 498
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
499 500 501
    if (!op_.HasOutputs(name)) {
      return false;
    }
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
526 527 528 529 530 531 532 533 534 535 536 537
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
538

M
mozga-intel 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
572 573
  }

574 575 576
  bool IsRuntime() const override { return true; }

 protected:
577 578
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
579
    PADDLE_ENFORCE_NOT_NULL(var);
580 581 582 583 584
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
585 586 587 588 589 590 591
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
592
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
593
    PADDLE_THROW("Only compile time support this method");
594 595 596 597 598 599 600 601 602
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
603 604
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
605 606 607
    }
  }

F
fengjiayi 已提交
608 609
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
610
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
611 612
  }

613
  proto::VarType::Type GetVarType(const std::string& name) const override {
614 615 616 617
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
618 619 620 621
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

622
 private:
623 624 625 626
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
627 628 629 630 631
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
632
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
633 634 635 636 637 638 639 640
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

641 642
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
643 644
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
645
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
646
  auto* dev_ctx = pool.Get(place);
647

648 649 650 651
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
652 653
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
654 655
  }

Q
qiaolongfei 已提交
656 657
  OpKernelMap& kernels = kernels_iter->second;

658 659
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
660

661 662 663 664
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
665 666
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
Q
qiaolongfei 已提交
667 668
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

669
  auto kernel_iter = kernels.find(expected_kernel_key);
670
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
671
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
672 673
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
674
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
675 676 677 678 679
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
680 681 682 683 684
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
685 686 687 688
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
689

Y
yuyang18 已提交
690 691 692 693 694 695
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
696
  }
Q
QI JUN 已提交
697

Y
yuyang18 已提交
698
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
699

Y
yuyang18 已提交
700 701 702
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
703 704
  }

D
dzhwinter 已提交
705
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
706
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
707
    dev_ctx->Wait();
D
dzhwinter 已提交
708
  }
C
chengduoZH 已提交
709 710 711

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
712
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
713 714 715
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
716 717
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
718 719 720
      }
    }
  }
Q
Qiao Longfei 已提交
721
}
Y
yuyang18 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
773
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
774 775 776 777 778 779
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
780

781
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
799 800 801 802
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
              "DataType of Paddle Op %s must be the same. Get %d != %d", Type(),
              data_type, tmp);
Y
Yu Yang 已提交
803 804 805 806 807 808
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
809
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
810
}
811

812 813 814 815 816 817 818 819
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
820 821
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
822 823
}

Q
Qiao Longfei 已提交
824
}  // namespace framework
L
liaogang 已提交
825
}  // namespace paddle