prepared_operator.cc 24.6 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

17
#include "paddle/fluid/framework/data_type_transform.h"
18
#include "paddle/fluid/framework/details/nan_inf_utils.h"
19
#include "paddle/fluid/imperative/infer_shape_context.h"
20
#include "paddle/fluid/imperative/tracer.h"
21
#include "paddle/pten/common/scalar.h"
22
#include "paddle/pten/common/scalar_array.h"
23
#include "paddle/utils/small_vector.h"
Q
QingshuChen 已提交
24
#ifdef PADDLE_WITH_XPU
25
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
Q
QingshuChen 已提交
26
#endif
27 28
#include "paddle/fluid/platform/device/gpu/gpu_info.h"

29
DECLARE_bool(check_nan_inf);
30
DECLARE_bool(run_pten_kernel);
31
DECLARE_bool(benchmark);
32

J
Jiabin Yang 已提交
33 34 35
namespace paddle {
namespace imperative {

36 37 38 39 40 41 42 43 44 45
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
46 47 48 49 50 51 52 53 54 55
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
  } else if (var.IsType<framework::SelectedRows>()) {
    return &(var.Get<framework::SelectedRows>().value());
  } else {
    return nullptr;
  }
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
static const framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

71
template <typename VarType>
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
89
      if (tensor && tensor->IsInitialized()) {
90 91 92 93 94 95 96 97
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
        framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
                                      *tensor, &out);
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
98 99 100 101 102 103 104
      }
    }
  }
}

PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
105
                       const framework::OpKernelType& kernel_type,
106
                       const framework::OperatorWithKernel::OpKernelFunc& func,
107
                       platform::DeviceContext* dev_ctx)
108 109 110 111 112 113
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
      dev_ctx_(dev_ctx) {}

114 115 116 117 118
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
                       const framework::OpKernelType& kernel_type,
                       const framework::KernelSignature& kernel_signature,
                       const pten::Kernel& pt_kernel,
119
                       pten::KernelContext* pt_kernel_context,
120 121 122 123 124 125 126 127
                       platform::DeviceContext* dev_ctx)
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(nullptr),
      dev_ctx_(dev_ctx),
      run_pten_kernel_(true),
      pt_kernel_signature_(kernel_signature),
128 129
      pt_kernel_(pt_kernel),
      pt_kernel_context_(pt_kernel_context) {}
130

131 132 133 134 135
template <typename VarType>
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
                       const NameVarMap<VarType>& outs,
                       const framework::OperatorWithKernel& op,
                       const platform::Place& place,
136
                       const framework::AttributeMap& attrs,
137 138
                       const framework::AttributeMap& default_attrs,
                       pten::KernelContext* pt_kernel_context) {
139
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
140
  auto* dev_ctx = pool.Get(place);
141

142 143 144 145 146 147 148 149
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
150 151 152 153
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
154 155
  }
#endif
J
Jiabin Yang 已提交
156

157
  // 1. get expected kernel key
158 159 160
  auto dygraph_exe_ctx = DygraphExecutionContext<VarType>(
      op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs);
  auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx);
161 162
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

163 164 165
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(op.Type())) {
    auto pt_kernel_signature = op.GetExpectedPtenKernelArgs(dygraph_exe_ctx);
C
Chen Weihang 已提交
166
    VLOG(6) << framework::KernelSignatureToString(pt_kernel_signature);
167 168 169 170 171 172 173

    auto pt_kernel_name = pten::KernelName(pt_kernel_signature.name);
    auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(expected_kernel_key);
    auto pt_kernel = pten::KernelFactory::Instance().SelectKernel(
        pt_kernel_name, pt_kernel_key);

    if (pt_kernel.IsValid()) {
C
Chen Weihang 已提交
174
      VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << pt_kernel_name
175 176 177 178 179
              << " | kernel key: " << pt_kernel_key
              << " | kernel: " << pt_kernel;

      // TODO(chenweihang): using CPUKernel when miss device kernel case
      return PreparedOp(op, ctx, expected_kernel_key, pt_kernel_signature,
180
                        pt_kernel, pt_kernel_context, dev_ctx);
181
    } else {
C
Chen Weihang 已提交
182
      VLOG(6) << "Dynamic mode ChoosePtenKernel - kernel `" << pt_kernel_name
183 184 185 186
              << "` not found.";
    }
  }

187
  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
188 189
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
190 191 192 193 194
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
J
Jiabin Yang 已提交
195 196 197

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
198
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
199 200 201 202
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(op.Type()))) {
203 204 205
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
206 207 208
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
209 210 211 212
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
213 214 215
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
216 217 218
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
219
#endif
220 221
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that
  // case
222 223 224 225
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));
226

227 228 229 230
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

231
  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
232 233
}

234 235 236 237
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
238
                               const framework::AttributeMap& attrs,
239 240 241 242
                               const framework::AttributeMap& default_attrs,
                               pten::KernelContext* pt_kernel_context) {
  return PrepareImpl<VarBase>(ins, outs, op, place, attrs, default_attrs,
                              pt_kernel_context);
243 244 245 246 247 248
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
249
                               const framework::AttributeMap& attrs,
250 251
                               const framework::AttributeMap& default_attrs,
                               pten::KernelContext* pt_kernel_context) {
252
  return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs,
253
                                      default_attrs, pt_kernel_context);
254 255
}

256
template <typename VarType>
257
static void BuildDygraphPtenKernelContext(
258 259 260 261
    const framework::KernelSignature& pt_kernel_signature,
    const pten::Kernel& pt_kernel, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
262
    platform::DeviceContext* dev_ctx, pten::KernelContext* kernel_ctx) {
263 264 265 266 267 268 269
  // TODO(chenweihang): now only work for very simple case,
  // many cases need to be deal with later:
  // 1. the input and output are not tensor
  // 2. the dispensbale, duplicable input and output
  // 3. needless attributes remove
  // 4. use pt Tensor directly
  // 5. kernel input is not DenseTensor
270
  kernel_ctx->SetDeviceContext(dev_ctx);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& attr_names = std::get<1>(pt_kernel_signature.args);
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  auto& input_defs = pt_kernel.args_def().input_defs();
  auto& output_defs = pt_kernel.args_def().output_defs();
  auto& attr_defs = pt_kernel.args_def().attribute_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ins.at(input_names[i]);
301 302 303

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);
    size_t end_idx = start_idx + ins_vector.size();
304 305 306 307 308 309 310 311 312 313 314 315
    auto current_vector_size = kernel_ctx->InputsSize();

    // If the memory needed is less than the current memory allocated, we will
    // reuse the current memory by using ReMakePtenDenseTensorFromVar.
    // Otherwise,we will create new storage.
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      const auto& variable = ins_vector[offset]->Var();
      if (current_vector_size > start_idx + offset) {
        auto& input_ptr = kernel_ctx->MutableInputPtrAt(start_idx + offset);
        if (input_ptr == nullptr) {
          input_ptr = experimental::MakePtenTensorBaseFromVar(variable, in_def);
        } else {
316
          experimental::ReMakePtenDenseTensorFromVar(
317 318
              variable, in_def, kernel_ctx->MutableInputAt<pten::DenseTensor>(
                                    start_idx + offset));
319
        }
320 321 322
      } else {
        kernel_ctx->EmplaceBackInputWithoutSetRange(
            experimental::MakePtenTensorBaseFromVar(variable, in_def));
323
      }
324
    }
325
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
326 327 328 329 330
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
    auto& out_def = output_defs.at(i);
    auto& outs_vector = outs.at(output_names[i]);
331 332 333

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);
    size_t end_idx = start_idx + outs_vector.size();
334 335 336 337 338 339 340 341 342 343 344 345 346
    auto current_vector_size = kernel_ctx->OutputsSize();
    // If the memory needed is less than the current memory allocated, we will
    // reuse the current memory by using ReMakePtenDenseTensorFromVar.
    // Otherwise,we will create new storage.
    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (current_vector_size > start_idx + offset) {
        experimental::ReMakePtenDenseTensorFromVar(
            outs_vector[offset]->MutableVar(), out_def,
            kernel_ctx->MutableOutputAt<pten::DenseTensor>(start_idx + offset));
      } else {
        kernel_ctx->EmplaceBackOutputWithoutSetRange(
            experimental::MakePtenTensorBaseFromVar(
                outs_vector[offset]->MutableVar(), out_def));
347
      }
348
    }
349
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
350 351 352
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
353 354 355 356 357 358 359 360
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      if (attrs.find(attr_names[i]) !=
          attrs.end()) {  // shape is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
361 362 363 364
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to VectorTensor when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVar(ins_vector[0]->Var())));
        } else {  // ShapeTensorList
          std::vector<framework::Variable*> variables;
          variables.reserve(ins_vector.size());
          for (const auto& var_base : ins_vector) {
            variables.push_back(var_base->MutableVar());
          }
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVarList(variables)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
388 389 390
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
      if (attrs.find(attr_names[i]) != attrs.end() ||
          default_attrs.find(attr_names[i]) !=
              default_attrs.end()) {  // scalar is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext in dygraph.",
              attr_names[i]));
        }
      } else {  // scalar is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        kernel_ctx->EmplaceBackAttr(std::move(
            experimental::MakePtenScalarFromVar(ins_vector[0]->Var())));
412
      }
413

414 415
    } else {
      // TODO(chenweihang): support other attrs later
416
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
417
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
418
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
419
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
420
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
421
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
422
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
423
      } else if (attr_defs[i].type_index ==
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        kernel_ctx->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          kernel_ctx->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr
440 441
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
442
            "Unsupported cast op attribute `%s` when construct "
443 444 445 446 447 448 449
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
template <typename VarType>
static void WriteBackToOutputs(
    const framework::KernelSignature& pt_kernel_signature,
    const NameVarMap<VarType>& outs, pten::KernelContext* kernel_ctx) {
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  for (size_t i = 0; i < output_names.size(); ++i) {
    auto& outs_vector = outs.at(output_names[i]);

    auto& range_pair = kernel_ctx->OutputRangeAt(i);
    auto pten_outs = kernel_ctx->MutableOutputBetween<pten::DenseTensor>(
        range_pair.first, range_pair.second);

    for (size_t j = 0; j < pten_outs.size(); ++j) {
      experimental::MakeVariableFromPtenTensor(pten_outs[j],
                                               outs_vector[j]->MutableVar());
    }
  }
}

470 471 472
template <typename VarType>
static void PreparedOpRunImpl(
    const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
473
    const framework::OpKernelType& kernel_type,
474
    const framework::OperatorWithKernel::OpKernelFunc& func,
475
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
476 477
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
478 479
  // TODO(zjl): remove scope in dygraph
  framework::Scope scope;
H
hong 已提交
480

481
  DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
482
                                                    &default_attrs, op.Type());
483 484
  static_cast<const framework::OperatorWithKernel&>(op).InferShape(
      &infer_shape_ctx);
H
hong 已提交
485

486
  func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
487
                                        attrs, default_attrs));
488

489 490 491 492 493
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

L
Leo Chen 已提交
494 495 496 497 498 499 500 501
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
517
}
H
hong 已提交
518

519 520 521 522
template <typename VarType>
static void PreparedOpRunPtImpl(
    const framework::OperatorBase& op,
    const framework::KernelSignature& pt_kernel_signature,
523 524 525
    const pten::Kernel& pt_kernel, pten::KernelContext* pt_kernel_context,
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
526 527 528 529 530 531
    const framework::AttributeMap& default_attrs) {
  DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
                                                    &default_attrs, op.Type());
  static_cast<const framework::OperatorWithKernel&>(op).InferShape(
      &infer_shape_ctx);

532 533 534 535 536
  BuildDygraphPtenKernelContext<VarType>(pt_kernel_signature, pt_kernel, ins,
                                         outs, attrs, default_attrs, dev_ctx,
                                         pt_kernel_context);

  pt_kernel(pt_kernel_context);
537

538 539
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
540 541
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
542 543 544 545 546 547
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

  WriteBackToOutputs<VarType>(pt_kernel_signature, outs, pt_kernel_context);

548 549
  // Ensure that it does not affect the VarBase life cycle management
  pt_kernel_context->ClearData();
550 551 552 553 554

  // TODO(chenweihang): add debug flags later
  // TODO(chenweihang): deal with complex cases later
}

555 556
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
557 558
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
559 560
  if (run_pten_kernel_) {
    PreparedOpRunPtImpl<VarBase>(op_, pt_kernel_signature_, pt_kernel_,
561 562
                                 pt_kernel_context_, dev_ctx_, ins, outs, attrs,
                                 default_attrs);
563 564 565 566
  } else {
    PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
                               outs, attrs, default_attrs);
  }
567
}
H
hong 已提交
568

569 570
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
571 572
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
573 574
  if (run_pten_kernel_) {
    PreparedOpRunPtImpl<VariableWrapper>(op_, pt_kernel_signature_, pt_kernel_,
575 576
                                         pt_kernel_context_, dev_ctx_, ins,
                                         outs, attrs, default_attrs);
577 578 579 580
  } else {
    PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
                                       ins, outs, attrs, default_attrs);
  }
J
Jiabin Yang 已提交
581 582 583 584
}

}  // namespace imperative
}  // namespace paddle