test_anakin_engine.cc 2.9 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

#include <map>

#include "paddle/fluid/inference/anakin/engine.h"

using anakin::AK_FLOAT;
using anakin::Precision;
using anakin::saber::NV;
using anakin::saber::X86;
using anakin::saber::Shape;
using anakin::PBlock;
using anakin::PTuple;
namespace paddle {
namespace inference {
namespace anakin {

class TestAnakinEngine : public ::testing::Test {
 protected:
  void SetUp() override;
  void TearDown() override {}

 protected:
  using AnakinNvEngineT = AnakinEngine<NV, Precision::FP32>;
  std::unique_ptr<AnakinNvEngineT> engine_{nullptr};
};

void TestAnakinEngine::SetUp() {
  engine_.reset(new AnakinEngine<NV, Precision::FP32>(true));
F
flame 已提交
45 46 47 48 49 50 51 52 53 54
}

TEST_F(TestAnakinEngine, Execute) {
  engine_->AddOp("op1", "Dense", {"x"}, {"y"});
  engine_->AddOpAttr("op1", "out_dim", 2);
  engine_->AddOpAttr("op1", "bias_term", false);
  engine_->AddOpAttr("op1", "axis", 1);
  std::vector<int> shape = {1, 1, 1, 2};
  Shape tmp_shape(shape);

55 56
  PBlock<NV> *weight1 = new PBlock<NV>(tmp_shape, AK_FLOAT);
  engine_->RegistBlock(weight1);
F
flame 已提交
57 58 59 60 61
  float *cpu_data = static_cast<float *>(weight1->h_tensor().mutable_data());
  cpu_data[0] = 2.;
  weight1->d_tensor().set_shape(tmp_shape);
  weight1->d_tensor().copy_from(weight1->h_tensor());
  engine_->AddOpAttr("op1", "weight_1", *weight1);
F
flame 已提交
62

F
flame 已提交
63 64 65 66 67
  engine_->Freeze();
  // PTuple<int> input_shape = {1};
  // engine_->AddOpAttr("x", "input_shape", input_shape);
  engine_->SetInputShape("x", {1, 1, 1, 1});
  engine_->Optimize();
68
  engine_->InitNet();
F
flame 已提交
69 70 71 72 73 74 75 76 77 78 79 80
  framework::LoDTensor x;
  framework::LoDTensor y;
  x.Resize({1, 1, 1, 1});
  y.Resize({1, 1, 1, 2});
  auto *x_data = x.mutable_data<float>(platform::CUDAPlace());
  float x_data_cpu[] = {1.};
  cudaMemcpy(x_data, x_data_cpu, sizeof(float), cudaMemcpyHostToDevice);

  std::map<std::string, framework::LoDTensor *> inputs = {{"x", &x}};
  auto *y_data = y.mutable_data<float>(platform::CUDAPlace());
  std::map<std::string, framework::LoDTensor *> outputs = {{"y", &y}};

81 82 83
  cudaStream_t stream;

  engine_->Execute(inputs, outputs, stream);
F
flame 已提交
84 85 86 87
  auto *y_data_gpu = y_data;
  float y_data_cpu[2];
  cudaMemcpy(y_data_cpu, y_data_gpu, sizeof(float) * 2, cudaMemcpyDeviceToHost);
  LOG(INFO) << "output value: " << y_data_cpu[0] << ", " << y_data_cpu[1];
F
flame 已提交
88
}
F
flame 已提交
89

F
flame 已提交
90 91 92
}  // namespace anakin
}  // namespace inference
}  // namespace paddle