beam_search_decode_op.h 10.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using LoDTensorArray = framework::LoDTensorArray;

// all the lod have 2 levels.
// The First is source level, the second is sentence level.
// source level describe how many candidate words for this source.
// sentence level describe these candidates belong to which prefix
const size_t kSourceLevel = 0;
const size_t kSentenceLevel = 1;

template <typename T>
struct BeamNode {
  BeamNode(int64_t word_id, T score) : word_id_(word_id), score_(score) {}

  ~BeamNode() {
    if (parent_) {
      parent_->DropKid(this);
      if (parent_->kids_.size() == 0UL) {
        delete parent_;
      }
    }
    VLOG(3) << "Delete BeamNode root with word_id:" << this->word_id_;
  }

  void AppendTo(BeamNode* parent) {
    parent_ = parent;
    parent->kids_.insert(this);
  }

  void DropKid(BeamNode* kid) { kids_.erase(kid); }

  BeamNode* parent_ = nullptr;
  std::unordered_set<BeamNode*> kids_;
  int64_t word_id_;
  T score_;
};

template <typename T>
using BeamNodeVector = std::vector<std::unique_ptr<BeamNode<T>>>;

template <typename T>
struct Sentence {
  std::vector<int64_t> word_ids;
  std::vector<T> scores;
};

template <typename T>
using SentenceVector = std::vector<Sentence<T>>;

template <typename T>
struct BeamSearchDecoder {
  /**
   * make a BeamNode and all it's related prefix BeanNode into a Sentence.
   */
  Sentence<T> MakeSentence(const BeamNode<T>* node) const;

  /**
   * Param:
   *  cur_ids: LoDTensor of One step for word ID
   *  cur_scores: LoDTensor of One Step for word score
   *  prefixes_list: prefixes for each source sentence.
   *  sentence_vector_list: result sentence_vector for each source sentence.
   * Return:
   *  a new prefixes list for each source of current step
   */
  std::vector<BeamNodeVector<T>> PackTwoSteps(
      const LoDTensor& cur_ids, const LoDTensor& cur_scores,
      std::vector<BeamNodeVector<T>>& prefixes_list,
      std::vector<SentenceVector<T>>* sentence_vector_list) const;

  /**
   * convert the result sentence_vector for each source sentence into two
   * LodTensor.
   * One is all candidate sentences with word id, one is all candidate sentences
   * with word score.
   * Param:
   *  sentence_vector_list: sentence_vector for each source sentence.
   *  id_tensor: result LoDTensor for sentences of id.
   *  score_tensor: result LoDTensor for sentences of score.
   */
  void ConvertSentenceVectorToLodTensor(
      std::vector<SentenceVector<T>> sentence_vector_list, LoDTensor* id_tensor,
      LoDTensor* score_tensor) const;

  /**
   * Pack all steps of id/score LodTensor into sentence LoDTensor
   * it's main logic is:
   * ```python
   *   prefix
   *   result_sentence
   *   result_lod_tensor
   *
   *   for (step in steps):
   *     prefix = PackTwoSteps(prefix, step, &result_sentence)
   *   ConvertSentenceVector<T>ToLodTensor(result_sentence, &result_lod_tensor)
   * ```
   */
  void PackAllSteps(const LoDTensorArray& step_ids,
                    const LoDTensorArray& step_scores, LoDTensor* id_tensor,
                    LoDTensor* score_tensor) const;
};

template <typename T>
Sentence<T> BeamSearchDecoder<T>::MakeSentence(const BeamNode<T>* node) const {
  Sentence<T> sentence;
  while (node != nullptr) {
    sentence.word_ids.emplace_back(node->word_id_);
    sentence.scores.emplace_back(node->score_);
    node = node->parent_;
  }

  std::reverse(std::begin(sentence.word_ids), std::end(sentence.word_ids));
  std::reverse(std::begin(sentence.scores), std::end(sentence.scores));

  return sentence;
}

template <typename T>
std::vector<BeamNodeVector<T>> BeamSearchDecoder<T>::PackTwoSteps(
    const LoDTensor& cur_ids, const LoDTensor& cur_scores,
    std::vector<BeamNodeVector<T>>& prefixes_list,
    std::vector<SentenceVector<T>>* sentence_vector_list) const {
  std::vector<BeamNodeVector<T>> result;

  for (size_t src_idx = 0; src_idx < cur_ids.lod()[kSourceLevel].size() - 1;
       ++src_idx) {
    size_t src_start = cur_ids.lod().at(kSourceLevel)[src_idx];
    size_t src_end = cur_ids.lod().at(kSourceLevel)[src_idx + 1];

    BeamNodeVector<T> beam_nodes;

    // if prefixes size is 0, it means this is the first step. In this step,
    // all candidate id is the start of candidate sentences.
    if (prefixes_list.empty()) {
      PADDLE_ENFORCE_EQ(cur_ids.lod().at(kSourceLevel).back(),
                        cur_ids.lod().at(kSentenceLevel).back(),
                        "in the first step");
      for (size_t id_idx = src_start; id_idx < src_end; ++id_idx) {
        beam_nodes.push_back(std::unique_ptr<BeamNode<T>>(new BeamNode<T>(
            cur_ids.data<int64_t>()[id_idx], cur_scores.data<T>()[id_idx])));
      }
    } else {
      BeamNodeVector<T>& prefixes = prefixes_list[src_idx];
      SentenceVector<T>& sentence_vector = (*sentence_vector_list)[src_idx];

      PADDLE_ENFORCE_EQ(src_end - src_start, prefixes.size(),
                        "prefix and candidate set number should be the same");

      auto candidate_offset = cur_ids.lod()[kSentenceLevel];
      for (size_t prefix_idx = 0; prefix_idx < prefixes.size(); ++prefix_idx) {
        std::unique_ptr<BeamNode<T>>& prefix = prefixes[prefix_idx];
        size_t candidate_start = candidate_offset[src_start + prefix_idx];
        size_t candidate_end = candidate_offset[src_start + prefix_idx + 1];
        if (candidate_start == candidate_end) {
          VLOG(3) << "this sentence has no more candidate, "
                     "add to result sentence and rm it from beam tree";
          sentence_vector.push_back(MakeSentence(prefix.get()));
          prefix.reset();
        } else {
          for (size_t candidate_idx = candidate_start;
               candidate_idx < candidate_end; ++candidate_idx) {
            auto* candidate =
                new BeamNode<T>(cur_ids.data<int64_t>()[candidate_idx],
                                cur_scores.data<T>()[candidate_idx]);
            candidate->AppendTo(prefix.get());
            beam_nodes.push_back(std::unique_ptr<BeamNode<T>>(candidate));
          }
          prefix.release();
        }
      }
    }
    result.push_back(std::move(beam_nodes));
  }
  return result;
}

template <typename T>
void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
    std::vector<SentenceVector<T>> sentence_vector_list, LoDTensor* id_tensor,
    LoDTensor* score_tensor) const {
  size_t src_num = sentence_vector_list.size();

  PADDLE_ENFORCE_NE(src_num, 0, "src_num should not be 0");

  std::vector<size_t> source_level_lod = {0};
  std::vector<size_t> sentence_level_lod = {0};
  std::vector<int64_t> id_data;
  std::vector<T> score_data;

  for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
    for (Sentence<T>& sentence : sentence_vector_list[src_idx]) {
      id_data.insert(id_data.end(), sentence.word_ids.begin(),
                     sentence.word_ids.end());
      score_data.insert(score_data.end(), sentence.scores.begin(),
                        sentence.scores.end());
      sentence_level_lod.push_back(sentence_level_lod.back() +
                                   sentence.word_ids.size());
    }
    source_level_lod.push_back(source_level_lod.back() +
                               sentence_vector_list[src_idx].size());
  }

  auto cpu_place = new paddle::platform::CPUPlace();
  paddle::platform::CPUDeviceContext cpu_ctx(*cpu_place);

  framework::LoD lod;
  lod.push_back(source_level_lod);
  lod.push_back(sentence_level_lod);

  id_tensor->set_lod(lod);
  id_tensor->Resize({static_cast<int64_t>(id_data.size())});
  id_tensor->mutable_data<int64_t>(paddle::platform::CPUPlace());
D
dzhwinter 已提交
235
  framework::CopyFromVector<int64_t>(id_data, cpu_ctx, id_tensor);
Q
Qiao Longfei 已提交
236 237 238 239

  score_tensor->set_lod(lod);
  score_tensor->Resize({static_cast<int64_t>(score_data.size())});
  score_tensor->mutable_data<T>(paddle::platform::CPUPlace());
D
dzhwinter 已提交
240
  framework::CopyFromVector<T>(score_data, cpu_ctx, score_tensor);
Q
Qiao Longfei 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
}

template <typename T>
void BeamSearchDecoder<T>::PackAllSteps(const LoDTensorArray& step_ids,
                                        const LoDTensorArray& step_scores,
                                        LoDTensor* id_tensor,
                                        LoDTensor* score_tensor) const {
  PADDLE_ENFORCE(!step_ids.empty(), "step num should be larger than 0");
  PADDLE_ENFORCE_EQ(step_ids.size(), step_scores.size(),
                    "step_ids and step_scores should be the same");
  const size_t step_num = step_ids.size();
  const size_t src_num = step_ids.at(0).lod().at(kSourceLevel).size() - 1;

  PADDLE_ENFORCE_GT(src_num, 0UL, "source num should be larger than 0");

  // previous prefixes for each step,
  // the init length is 0, means this is the first step.
  std::vector<BeamNodeVector<T>> beamnode_vector_list(0);
  std::vector<SentenceVector<T>> sentence_vector_list(src_num);

  // pack all steps for one batch first, then another batch
  for (size_t step_id = 0; step_id < step_num; ++step_id) {
    beamnode_vector_list =
        PackTwoSteps(step_ids.at(step_id), step_scores.at(step_id),
                     beamnode_vector_list, &sentence_vector_list);
  }
  // append last beam_node to result
  for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
    for (auto& beam_node : beamnode_vector_list.at(src_idx)) {
      sentence_vector_list[src_idx].push_back(MakeSentence(beam_node.get()));
      beam_node.reset();
    }
  }

  ConvertSentenceVectorToLodTensor(sentence_vector_list, id_tensor,
                                   score_tensor);
}

}  // namespace operators
}  // namespace paddle