common_sparse_table.cc 19.6 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/table/common_sparse_table.h"
16

T
tangwei12 已提交
17
#include <sstream>
18 19 20 21 22 23 24 25 26

#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {
class ValueBlock;
}  // namespace distributed
}  // namespace paddle
T
tangwei12 已提交
27

28
#define PSERVER_SAVE_SUFFIX "_txt"
29

T
tangwei12 已提交
30 31 32
namespace paddle {
namespace distributed {

33 34
enum SaveMode { all, base, delta };

T
tangwei12 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
struct Meta {
  std::string param;
  int shard_id;
  std::vector<std::string> names;
  std::vector<int> dims;
  uint64_t count;
  std::unordered_map<std::string, int> dims_map;

  explicit Meta(const std::string& metapath) {
    std::ifstream file(metapath);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      if (StartWith(line, "#")) {
        continue;
      }
      auto pairs = paddle::string::split_string<std::string>(line, "=");
      PADDLE_ENFORCE_EQ(
          pairs.size(), 2,
          paddle::platform::errors::InvalidArgument(
              "info in %s except k=v, but got %s", metapath, line));

      if (pairs[0] == "param") {
        param = pairs[1];
      }
      if (pairs[0] == "shard_id") {
        shard_id = std::stoi(pairs[1]);
      }
      if (pairs[0] == "row_names") {
        names = paddle::string::split_string<std::string>(pairs[1], ",");
      }
      if (pairs[0] == "row_dims") {
        auto dims_strs =
            paddle::string::split_string<std::string>(pairs[1], ",");
        for (auto& str : dims_strs) {
          dims.push_back(std::stoi(str));
        }
      }
      if (pairs[0] == "count") {
        count = std::stoull(pairs[1]);
      }
    }
    for (int x = 0; x < names.size(); ++x) {
      dims_map[names[x]] = dims[x];
    }
  }

  Meta(std::string param, int shard_id, std::vector<std::string> row_names,
       std::vector<int> dims, uint64_t count) {
    this->param = param;
    this->shard_id = shard_id;
    this->names = row_names;
    this->dims = dims;
    this->count = count;
  }

  std::string ToString() {
    std::stringstream ss;
    ss << "param=" << param << "\n";
    ss << "shard_id=" << shard_id << "\n";
    ss << "row_names=" << paddle::string::join_strings(names, ',') << "\n";
    ss << "row_dims=" << paddle::string::join_strings(dims, ',') << "\n";
    ss << "count=" << count << "\n";
    return ss.str();
  }
};

void ProcessALine(const std::vector<std::string>& columns, const Meta& meta,
                  std::vector<std::vector<float>>* values) {
104 105 106
  auto colunmn_size = columns.size();
  auto load_values =
      paddle::string::split_string<std::string>(columns[colunmn_size - 1], ",");
107
  values->reserve(meta.names.size());
T
tangwei12 已提交
108

109 110
  int offset = 0;
  for (int x = 0; x < meta.names.size(); ++x) {
T
tangwei12 已提交
111
    std::vector<float> val;
112 113 114
    auto start = load_values.begin() + offset;
    auto end = load_values.begin() + offset + meta.dims[x];
    PADDLE_ENFORCE_LE(offset + meta.dims[x], load_values.size(),
T
tangwei12 已提交
115
                      paddle::platform::errors::InvalidArgument(
116 117 118 119 120
                          "The data format in txt does not meet the field "
                          "requirements defined in meta"));

    std::transform(start, end, std::back_inserter(val),
                   [](std::string va) { return std::stof(va); });
T
tangwei12 已提交
121
    values->push_back(val);
122
    offset += meta.dims[x];
T
tangwei12 已提交
123 124 125 126 127
  }
}

int64_t SaveToText(std::ostream* os, std::shared_ptr<ValueBlock> block,
                   const int mode) {
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  int64_t save_num = 0;
  for (auto& table : block->values_) {
    for (auto& value : table) {
      if (mode == SaveMode::delta && !value.second->need_save_) {
        continue;
      }
      save_num += 1;

      auto* vs = value.second->data_.data();
      std::stringstream ss;
      auto id = value.first;
      ss << id << "\t" << value.second->count_ << "\t"
         << value.second->unseen_days_ << "\t" << value.second->is_entry_
         << "\t";

      for (int i = 0; i < block->value_length_; i++) {
        ss << vs[i];
        ss << ",";
      }
T
tangwei12 已提交
147

148
      ss << "\n";
T
tangwei12 已提交
149

150
      os->write(ss.str().c_str(), sizeof(char) * ss.str().size());
151

152 153 154
      if (mode == SaveMode::base || mode == SaveMode::delta) {
        value.second->need_save_ = false;
      }
155
    }
T
tangwei12 已提交
156 157
  }

158
  return save_num;
T
tangwei12 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
}

int64_t LoadFromText(const std::string& valuepath, const std::string& metapath,
                     const int pserver_id, const int pserver_num,
                     const int local_shard_num,
                     std::vector<std::shared_ptr<ValueBlock>>* blocks) {
  Meta meta = Meta(metapath);

  int num_lines = 0;
  std::ifstream file(valuepath);
  std::string line;

  while (std::getline(file, line)) {
    auto values = paddle::string::split_string<std::string>(line, "\t");
    auto id = std::stoull(values[0]);

    if (id % pserver_num != pserver_id) {
176
      VLOG(3) << "will not load " << values[0] << " from " << valuepath
T
tangwei12 已提交
177 178 179 180 181 182 183 184 185
              << ", please check id distribution";
      continue;
    }

    auto shard_id = id % local_shard_num;
    auto block = blocks->at(shard_id);

    std::vector<std::vector<float>> kvalues;
    ProcessALine(values, meta, &kvalues);
186 187 188

    block->Init(id, false);

189
    VALUE* value_instant = block->GetValue(id);
190 191 192 193 194 195 196 197 198 199 200
    if (values.size() == 5) {
      value_instant->count_ = std::stoi(values[1]);
      value_instant->unseen_days_ = std::stoi(values[2]);
      value_instant->is_entry_ = static_cast<bool>(std::stoi(values[3]));
    }

    std::vector<float*> block_values = block->Get(id, meta.names, meta.dims);
    auto blas = GetBlas<float>();
    for (int x = 0; x < meta.names.size(); ++x) {
      blas.VCOPY(meta.dims[x], kvalues[x].data(), block_values[x]);
    }
T
tangwei12 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214
  }

  return 0;
}

int32_t CommonSparseTable::initialize() {
  _shards_task_pool.resize(task_pool_size_);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
  }

  sync = _config.common().sync();
  VLOG(1) << "table " << _config.common().table_name() << " is sync: " << sync;

215 216
  _global_lr = new float(1.0);

T
tangwei12 已提交
217 218 219
  auto common = _config.common();
  int size = static_cast<int>(common.params().size());

T
tangwei12 已提交
220
  size_t offset = 0;
T
tangwei12 已提交
221 222 223
  for (int x = 0; x < size; ++x) {
    auto& varname = common.params()[x];
    auto& dim = common.dims()[x];
T
tangwei12 已提交
224 225 226 227 228 229 230

    value_idx_[varname] = x;
    value_names_.push_back(varname);
    value_dims_.push_back(dim);
    value_offsets_.push_back(offset);
    initializer_attrs_.push_back(common.initializers()[x]);

T
tangwei12 已提交
231 232
    if (varname == "Param") {
      param_dim_ = dim;
T
tangwei12 已提交
233
      param_offset_ = offset;
T
tangwei12 已提交
234
    }
T
tangwei12 已提交
235 236

    offset += dim;
T
tangwei12 已提交
237 238
  }

T
tangwei12 已提交
239 240 241 242 243 244 245 246 247
  initialize_value();
  initialize_optimizer();
  initialize_recorder();
  return 0;
}

int32_t CommonSparseTable::initialize_recorder() { return 0; }

int32_t CommonSparseTable::initialize_value() {
T
tangwei12 已提交
248
  auto common = _config.common();
T
tangwei12 已提交
249
  shard_values_.reserve(task_pool_size_);
T
tangwei12 已提交
250

T
tangwei12 已提交
251
  for (int x = 0; x < task_pool_size_; ++x) {
T
tangwei12 已提交
252 253 254
    auto shard = std::make_shared<ValueBlock>(
        value_names_, value_dims_, value_offsets_, value_idx_,
        initializer_attrs_, common.entry());
T
tangwei12 已提交
255

T
tangwei12 已提交
256 257
    shard_values_.emplace_back(shard);
  }
T
tangwei12 已提交
258 259 260 261 262 263 264 265 266 267

  auto accessor = _config.accessor();
  std::vector<uint64_t> feasigns;

  for (size_t x = 0; x < accessor.fea_dim(); ++x) {
    if (x % _shard_num == _shard_idx) {
      feasigns.push_back(x);
    }
  }

268
  VLOG(3) << "has " << feasigns.size() << " ids need to be pre inited";
T
tangwei12 已提交
269 270 271 272 273 274 275

  auto buckets = bucket(feasigns.size(), 10);
  for (int x = 0; x < 10; ++x) {
    auto bucket_feasigns = buckets[x + 1] - buckets[x];
    std::vector<uint64_t> ids(bucket_feasigns);
    std::copy(feasigns.begin() + buckets[x], feasigns.begin() + buckets[x + 1],
              ids.begin());
276 277 278 279 280

    std::vector<uint32_t> fres;
    fres.resize(ids.size(), 1);

    auto pull_value = PullSparseValue(ids, fres, param_dim_);
T
tangwei12 已提交
281 282
    std::vector<float> pulls;
    pulls.resize(bucket_feasigns * param_dim_);
283
    pull_sparse(pulls.data(), pull_value);
T
tangwei12 已提交
284 285
  }

T
tangwei12 已提交
286 287 288 289 290 291 292 293
  return 0;
}

int32_t CommonSparseTable::initialize_optimizer() {
  auto common = _config.common();
  auto name = common.name();

  if (name == "sgd") {
T
tangwei12 已提交
294 295
    optimizer_ = std::make_shared<SSGD>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
296
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
297
  } else if (name == "adam") {
T
tangwei12 已提交
298 299
    optimizer_ = std::make_shared<SAdam>(value_names_, value_dims_,
                                         value_offsets_, value_idx_);
300
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
301
  } else if (name == "sum") {
T
tangwei12 已提交
302 303
    optimizer_ = std::make_shared<SSUM>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
T
tangwei12 已提交
304
  } else {
305
    VLOG(3) << "init optimizer failed";
T
tangwei12 已提交
306 307
  }

308
  VLOG(3) << "init optimizer " << name << " done";
T
tangwei12 已提交
309 310 311
  return 0;
}

312 313 314 315 316 317
int32_t CommonSparseTable::set_global_lr(float* lr) {
  _global_lr = lr;
  optimizer_->set_global_lr(_global_lr);
  return 0;
}

T
tangwei12 已提交
318 319 320
int32_t CommonSparseTable::load(const std::string& path,
                                const std::string& param) {
  rwlock_->WRLock();
321
  VLOG(3) << "sparse table load with " << path << " with meta " << param;
T
tangwei12 已提交
322 323 324 325 326 327 328 329 330 331
  LoadFromText(path, param, _shard_idx, _shard_num, task_pool_size_,
               &shard_values_);
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::save(const std::string& dirname,
                                const std::string& param) {
  rwlock_->WRLock();
  int mode = std::stoi(param);
332
  VLOG(3) << "sparse table save: " << dirname << " mode: " << mode;
T
tangwei12 已提交
333 334

  auto varname = _config.common().table_name();
335 336
  std::string var_store =
      string::Sprintf("%s/%s%s", dirname, varname, PSERVER_SAVE_SUFFIX);
T
tangwei12 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
  MkDirRecursively(var_store.c_str());

  VLOG(3) << "save " << varname << " in dir: " << var_store << " begin";
  std::vector<std::string> params(_config.common().params().begin(),
                                  _config.common().params().end());
  std::string shard_var_pre =
      string::Sprintf("%s.block%d", varname, _shard_idx);

  std::string value_ = string::Sprintf("%s/%s.txt", var_store, shard_var_pre);

  std::unique_ptr<std::ofstream> value_out(new std::ofstream(value_));

  int64_t total_ins = 0;
  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // save values
T
tangwei12 已提交
352
    total_ins += SaveToText(value_out.get(), shard_values_[shard_id], mode);
T
tangwei12 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
  }
  value_out->close();

  // save meta
  std::stringstream stream;
  stream << "param=" << _config.common().table_name() << "\n";
  stream << "shard_id=" << _shard_idx << "\n";
  stream << "row_names="
         << paddle::string::join_strings(_config.common().params(), ',')
         << "\n";
  stream << "row_dims="
         << paddle::string::join_strings(_config.common().dims(), ',') << "\n";
  stream << "count=" << total_ins << "\n";
  std::string meta_ = string::Sprintf("%s/%s.meta", var_store, shard_var_pre);
  std::unique_ptr<std::ofstream> meta_out(new std::ofstream(meta_));
  meta_out->write(stream.str().c_str(), sizeof(char) * stream.str().size());
  meta_out->close();
  VLOG(3) << "save " << varname << " in dir: " << var_store << " done";
  rwlock_->UNLock();
  return 0;
}

std::pair<int64_t, int64_t> CommonSparseTable::print_table_stat() {
  int64_t feasign_size = 0;
  int64_t mf_size = 0;

379 380 381 382
  for (auto& shard : shard_values_) {
    for (auto& table : shard->values_) {
      feasign_size += table.size();
    }
T
tangwei12 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  }

  return {feasign_size, mf_size};
}

int32_t CommonSparseTable::pour() {
  rwlock_->RDLock();

  std::vector<float> values;
  std::vector<uint64_t> keys;

  keys.reserve(pull_reservoir_.size());
  values.reserve(pull_reservoir_.size() * param_dim_);

  for (auto& val : pull_reservoir_) {
    keys.push_back(val.first);
    auto& reservoir = val.second;
    reservoir.avg();
    std::copy(reservoir.values.begin(), reservoir.values.end(),
              std::back_inserter(values));
  }
  _push_sparse(keys.data(), values.data(), pull_reservoir_.size());

  pull_reservoir_.clear();
  rwlock_->UNLock();
  return 0;
}

411 412
int32_t CommonSparseTable::pull_sparse(float* pull_values,
                                       const PullSparseValue& pull_value) {
T
tangwei12 已提交
413 414
  rwlock_->RDLock();

415 416
  auto shard_num = task_pool_size_;
  std::vector<std::future<int>> tasks(shard_num);
T
tangwei12 已提交
417

418
  for (int shard_id = 0; shard_id < shard_num; ++shard_id) {
T
tangwei12 已提交
419
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
420
        [this, shard_id, shard_num, &pull_value, &pull_values]() -> int {
T
tangwei12 已提交
421
          auto& block = shard_values_[shard_id];
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

          std::vector<int> offsets;
          pull_value.Fission(shard_id, shard_num, &offsets);

          if (pull_value.is_training_) {
            for (auto& offset : offsets) {
              auto feasign = pull_value.feasigns_[offset];
              auto frequencie = pull_value.frequencies_[offset];
              auto* value = block->Init(feasign, true, frequencie);
              std::copy_n(value + param_offset_, param_dim_,
                          pull_values + param_dim_ * offset);
            }
          } else {
            for (auto& offset : offsets) {
              auto feasign = pull_value.feasigns_[offset];
              auto* value = block->Init(feasign, false);
              std::copy_n(value + param_offset_, param_dim_,
                          pull_values + param_dim_ * offset);
            }
T
tangwei12 已提交
441
          }
T
tangwei12 已提交
442

T
tangwei12 已提交
443 444 445 446 447 448 449 450 451 452 453
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

T
Thunderbrook 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
int32_t CommonSparseTable::pull_sparse_ptr(char** pull_values,
                                           const uint64_t* keys, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &offset_bucket, &pull_values]() -> int {
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
            auto* value = block->InitGet(id);
            // std::copy_n(value + param_offset_, param_dim_,
            //            pull_values + param_dim_ * offset);
            pull_values[offset] = (char*)value;
          }

          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

T
tangwei12 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float* values, size_t num) {
  rwlock_->RDLock();
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          optimizer_->update(keys, values, num, offsets,
                             shard_values_[shard_id].get());
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float* values, size_t num) {
  if (sync) {
    std::future<int> task =
        _shards_task_pool[0]->enqueue([this, &keys, &values, num]() -> int {
          for (int x = 0; x < num; ++x) {
            auto id = keys[x];
            auto has = pull_reservoir_.find(id);

            if (has == pull_reservoir_.end()) {
              pull_reservoir_[id] = ReservoirValue<float>(param_dim_);
            }

            auto& reservoir = pull_reservoir_[id];
            reservoir.add(values + x * param_dim_, param_dim_);
          }
          return 0;
        });
    task.wait();
  } else {
    _push_sparse(keys, values, num);
  }

  return 0;
}

T
Thunderbrook 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float** values, size_t num) {
  _push_sparse(keys, values, num);
  return 0;
}

int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float** values, size_t num) {
  rwlock_->RDLock();
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          for (size_t i = 0; i < offsets.size(); ++i) {
            std::vector<uint64_t> tmp_off = {0};
            optimizer_->update(keys + offsets[i], values[offsets[i]], num,
                               tmp_off, shard_values_[shard_id].get());
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

T
tangwei12 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
int32_t CommonSparseTable::push_sparse_param(const uint64_t* keys,
                                             const float* values, size_t num) {
  rwlock_->RDLock();

  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
T
tangwei12 已提交
602
        [this, shard_id, &keys, &offset_bucket, &values]() -> int {
T
tangwei12 已提交
603 604 605 606 607 608
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
609
            auto* value = block->Init(id, false);
T
tangwei12 已提交
610 611
            std::copy_n(values + param_dim_ * offset, param_dim_,
                        value + param_offset_);
612
            block->SetEntry(id, true);
T
tangwei12 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  rwlock_->UNLock();
  return 0;
}

int32_t CommonSparseTable::flush() { return 0; }

627 628 629
int32_t CommonSparseTable::shrink(const std::string& param) {
  rwlock_->WRLock();
  int threshold = std::stoi(param);
630
  VLOG(3) << "sparse table shrink: " << threshold;
631 632 633

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // shrink
634
    VLOG(4) << shard_id << " " << task_pool_size_ << " begin shrink";
635 636 637
    shard_values_[shard_id]->Shrink(threshold);
  }
  rwlock_->UNLock();
T
tangwei12 已提交
638 639
  return 0;
}
640

T
tangwei12 已提交
641 642 643 644
void CommonSparseTable::clear() { VLOG(0) << "clear coming soon"; }

}  // namespace distributed
}  // namespace paddle