pool_op.cc 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24 25 26 27 28 29 30
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
31 32 33 34
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Out(Output) of Pooling should not be null.");
C
chengduoZH 已提交
35

C
chengduoZH 已提交
36
    auto in_x = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
37
    auto out = ctx.Output<Tensor>("Out");
38
    bool global_pooling = Attr<bool>("globalPooling");
39
    std::string pooling_type = Attr<std::string>("poolingType");
40 41 42 43
    std::vector<int> ksize = Attr<std::vector<int>>("ksize");
    std::vector<int> strides = Attr<std::vector<int>>("strides");
    std::vector<int> paddings = Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
44 45
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type should be 'max' or 'avg'");
C
chengduoZH 已提交
46
    PADDLE_ENFORCE(in_x->dims().size() == 4 || in_x->dims().size() == 5,
C
chengduoZH 已提交
47
                   "Pooling intput should be 4-D or 5-D");
48 49 50 51 52 53 54 55 56

    if (global_pooling) {
      ksize.resize(static_cast<size_t>(in_x->dims().size()) - 2);
      for (size_t i = 0; i < ksize.size(); ++i)
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
    }

    PADDLE_ENFORCE(in_x->dims().size() == static_cast<size_t>(ksize.size() + 2),
                   "Input size and Pooling size should be consistent.");
C
chengduoZH 已提交
57 58 59 60 61 62
    PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3,
                   "Pooling size should be 2 elements. or 3 elements.");
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                      "strides size and pooling size should be the same.");
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                      "paddings size and pooling size should be the same.");
63

C
chengduoZH 已提交
64
    std::vector<int64_t> output_shape({in_x->dims()[0], in_x->dims()[1]});
65
    for (size_t i = 0; i < ksize.size(); ++i) {
C
chengduoZH 已提交
66 67
      output_shape.push_back(OutputSizePool(in_x->dims()[i + 2], ksize[i],
                                            paddings[i], strides[i]));
68
    }
69
    out->Resize(framework::make_ddim(output_shape));
70 71 72 73 74 75 76 77 78
  }
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
C
chengduoZH 已提交
79 80 81 82 83 84 85
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Out"),
                            "Out(Output) of Pooling should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.Output<Tensor>(framework::GradVarName("X")),
                            "Input@Grad of Pooling should not be null.");

86
    auto in = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
87
    auto d_in = ctx.Output<Tensor>(framework::GradVarName("X"));
C
chengduoZH 已提交
88
    d_in->Resize(in->dims());
89 90 91
  }
};

C
chengduoZH 已提交
92
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
93
 public:
C
chengduoZH 已提交
94
  Pool2dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
95 96
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
97
        "X",
98
        "The input tensor of pooling operator. "
C
chengduoZH 已提交
99
        "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
100
        "number of channels, H and W is the height and width of feature.");
101
    AddOutput("Out",
102
              "The output tensor of pooling operator."
C
chengduoZH 已提交
103
              "The format of output tensor is also NCHW.");
104

105
    AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
106
                         "poolingType of pooling operator."
C
chengduoZH 已提交
107
                         "str constant equal to 'max' or 'avg'");
108
    AddAttr<std::vector<int>>(
109 110 111 112
        "ksize",
        "Pooling size(depth, height, width) of pooling operator."
        "If globalPooling = true, ksize is ignored and need not be specified.");
    AddAttr<bool>(
C
chengduoZH 已提交
113 114
        "globalPooling",
        "whether to use the globalPooling."
115 116 117 118
        "int constant equal to false or true"
        "default false"
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
C
chengduoZH 已提交
119 120 121
    AddAttr<std::vector<int>>("strides",
                              "strides(height, width) of pooling operator."
                              "default {1,1}")
C
chengduoZH 已提交
122 123
        .SetDefault({1, 1})
        .AddCustomChecker(GreaterThanChecker_pool({0, 0}));
C
chengduoZH 已提交
124 125 126
    AddAttr<std::vector<int>>("paddings",
                              "paddings(height, width) of pooling operator."
                              "default {0,0}")
C
chengduoZH 已提交
127 128
        .SetDefault({0, 0})
        .AddCustomChecker(EqualGreaterThanChecker_pool({0, 0}));
129
    AddComment(R"DOC(
C
chengduoZH 已提交
130
The pooling2d operation calculates the output based on
131
the input, poolingType and ksize, strides, paddings parameters.
132 133
)DOC");
  }
C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

 private:
  struct GreaterThanChecker_pool {
   public:
    explicit GreaterThanChecker_pool(std::vector<int> lower_bound)
        : lower_bound_(lower_bound) {}
    void operator()(std::vector<int> &value) const {
      PADDLE_ENFORCE(value.size() == lower_bound_.size(), "equal check fails.");
      for (size_t i = 0; i < value.size(); ++i) {
        PADDLE_ENFORCE(value[i] > lower_bound_[i], "larger_than check fails.");
      }
    }

   private:
    std::vector<int> lower_bound_;
  };

  struct EqualGreaterThanChecker_pool {
   public:
    explicit EqualGreaterThanChecker_pool(std::vector<int> lower_bound)
        : lower_bound_(lower_bound) {}
    void operator()(std::vector<int> &value) const {
      PADDLE_ENFORCE(value.size() == lower_bound_.size(), "equal check fails.");
      for (size_t i = 0; i < value.size(); ++i) {
        PADDLE_ENFORCE(value[i] >= lower_bound_[i], "larger_than check fails.");
      }
    }

   private:
    std::vector<int> lower_bound_;
  };
165
};
C
chengduoZH 已提交
166
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
167
 public:
C
chengduoZH 已提交
168
  Pool3dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
169
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
170 171 172 173 174
    AddInput("X",
             "The input tensor of pooling operator. "
             "The format of input tensor is NCDHW. Where N is batch size, C is "
             "the "
             "number of channels, D, H and W is the depth, height and width of "
C
chengduoZH 已提交
175
             "feature.");
176
    AddOutput("Out",
177
              "The output tensor of pooling operator."
C
chengduoZH 已提交
178
              "The format of output tensor is also NCDHW.");
179

180
    AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
181
                         "poolingType of pooling operator."
C
chengduoZH 已提交
182
                         "str constant equal to 'max' or 'avg'");
183
    AddAttr<std::vector<int>>(
184 185 186 187
        "ksize",
        "pooling size(depth, height, width) of pooling operator."
        "If globalPooling = true, ksize is ignored and need not be specified.");
    AddAttr<bool>(
C
chengduoZH 已提交
188 189
        "globalPooling",
        "whether to use the globalPooling."
190 191 192 193
        "int constant equal to false or true"
        "default false"
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
C
chengduoZH 已提交
194 195 196 197
    AddAttr<std::vector<int>>(
        "strides",
        "strides(depth, height, width) of pooling operator."
        "default {1,1,1}")
C
chengduoZH 已提交
198 199
        .SetDefault({1, 1, 1})
        .AddCustomChecker(GreaterThanChecker_pool({0, 0, 0}));
C
chengduoZH 已提交
200 201 202 203
    AddAttr<std::vector<int>>(
        "paddings",
        "paddings(depth, height, width) of pooling operator."
        "default {0,0,0}")
C
chengduoZH 已提交
204 205
        .SetDefault({0, 0, 0})
        .AddCustomChecker(EqualGreaterThanChecker_pool({0, 0, 0}));
206
    AddComment(R"DOC(
C
chengduoZH 已提交
207
The pooling3d operation calculates the output based on
208
the input, poolingType and ksize, strides, paddings parameters.
209 210
)DOC");
  }
C
chengduoZH 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

 private:
  struct GreaterThanChecker_pool {
   public:
    explicit GreaterThanChecker_pool(std::vector<int> lower_bound)
        : lower_bound_(lower_bound) {}
    void operator()(std::vector<int> &value) const {
      PADDLE_ENFORCE(value.size() == lower_bound_.size(), "equal check fails.");
      for (size_t i = 0; i < value.size(); ++i) {
        PADDLE_ENFORCE(value[i] > lower_bound_[i], "larger_than check fails.");
      }
    }

   private:
    std::vector<int> lower_bound_;
  };

  struct EqualGreaterThanChecker_pool {
   public:
    explicit EqualGreaterThanChecker_pool(std::vector<int> lower_bound)
        : lower_bound_(lower_bound) {}
    void operator()(std::vector<int> &value) const {
      PADDLE_ENFORCE(value.size() == lower_bound_.size(), "equal check fails.");
      for (size_t i = 0; i < value.size(); ++i) {
        PADDLE_ENFORCE(value[i] >= lower_bound_[i], "larger_than check fails.");
      }
    }

   private:
    std::vector<int> lower_bound_;
  };
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool2d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool3d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool3d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>);