convert.h 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <mlir/IR/Builders.h>
#include <mlir/Transforms/DialectConversion.h>
#include "paddle/infrt/dialect/infrt/ir/infrt_dialect.h"
#include "paddle/infrt/dialect/tensorrt/trt_ops.h"

namespace infrt {
namespace trt {
static mlir::Value createTRTConv2dOp(mlir::PatternRewriter &rewriter,
                                     mlir::Operation *op) {
  ::mlir::Operation::operand_range Input(op->getOperands());
  ::mlir::Operation::operand_range Filter(op->getOperands());

  ::mlir::SmallVector<::mlir::Value, 4> operands;
  auto castedOp0 = ::llvm::dyn_cast<infrt::pd::Conv2dOp>(op);
  (void)castedOp0;
  Input = castedOp0.getODSOperands(0);
  Filter = castedOp0.getODSOperands(1);
  operands.push_back((*Input.begin()));
  operands.push_back((*Input.begin()));

  ::mlir::SmallVector<::mlir::Type, 4> resultTypes;
  for (auto v : castedOp0.getODSResults(0)) {
    resultTypes.push_back(v.getType());
  }
  ::mlir::SmallVector<::mlir::NamedAttribute, 8> attributes;
  {
    auto tblgen_attr = rewriter.getSI32IntegerAttr(3);
    attributes.emplace_back(rewriter.getStringAttr("out_channel_num"),
                            tblgen_attr);
  }
  {
    auto tblgen_attr = rewriter.getI32ArrayAttr({3, 3});
    attributes.emplace_back(rewriter.getStringAttr("kernel_size"), tblgen_attr);
  }
  {
    auto tblgen_attr = op->getAttrOfType<::mlir::ArrayAttr>("strides");
    (void)tblgen_attr;
    attributes.emplace_back(rewriter.getStringAttr("strides"), tblgen_attr);
  }
  {
    auto tblgen_attr = op->getAttrOfType<::mlir::ArrayAttr>("paddings");
    (void)tblgen_attr;
    attributes.emplace_back(rewriter.getStringAttr("paddings"), tblgen_attr);
  }
  {
    auto tblgen_attr =
        op->getAttrOfType<::mlir::StringAttr>("padding_algorithm");
    (void)tblgen_attr;
    attributes.emplace_back(rewriter.getStringAttr("padding_mode"),
                            tblgen_attr);
  }
  {
    auto tblgen_attr = op->getAttrOfType<::mlir::IntegerAttr>("groups");
    (void)tblgen_attr;
    attributes.emplace_back(rewriter.getStringAttr("groups"), tblgen_attr);
  }
  {
    auto tblgen_attr = op->getAttrOfType<::mlir::ArrayAttr>("dilations");
    (void)tblgen_attr;
    attributes.emplace_back(rewriter.getStringAttr("dilations"), tblgen_attr);
  }
  {
    auto tblgen_attr = op->getAttrOfType<::mlir::StringAttr>("data_format");
    (void)tblgen_attr;
    attributes.emplace_back(rewriter.getStringAttr("data_format"), tblgen_attr);
  }
  return rewriter.create<trt::ConvolutionOp>(
      op->getLoc(), resultTypes, operands, attributes);
}
}  // namespace trt
}  // namespace infrt