test_PyDataProvider.cpp 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include <gtest/gtest.h>

#include "paddle/gserver/dataproviders/PyDataProvider.h"
#include "paddle/utils/Util.h"

#include "TestUtil.h"

using namespace std;     // NOLINT
using namespace paddle;  // NOLINT

void simpleValueCheck(const vector<Argument>& argumentList, bool useGpu);
void simpleSequenceCheck(const vector<Argument>& argumentList, int sample_num);

TEST(PyDataProvider, py_fill_slots) {
  DataConfig config;
  config.set_type("py");
  config.set_async_load_data(false);
  config.set_load_data_module(std::string("pyDataProvider"));
  config.set_load_data_object(std::string("SimpleDataProvider"));
  config.clear_files();
  std::string dataFile = "gserver/tests/pyDataProvider/pyDataProviderList";
  config.set_files(dataFile);
#ifdef PADDLE_ONLY_CPU
  bool useGpu = false;
#else
  bool useGpu = true;
#endif
  unique_ptr<DataProvider> dataProvider(DataProvider::create(config, useGpu));
  DataBatch dataBatch;
  dataProvider->getNextBatchInternal(2, &dataBatch);
  const std::vector<Argument>& argumentList = dataBatch.getStreams();
  // Check size
  EXPECT_EQ(argumentList.size(), 3UL);
  EXPECT_EQ(argumentList[0].value->getWidth(), 3UL);
  EXPECT_EQ(argumentList[0].value->getHeight(), 2UL);
  EXPECT_EQ(argumentList[0].value->getElementCnt(), 6UL);
  EXPECT_EQ(argumentList[1].value->getWidth(), 7UL);
  EXPECT_EQ(argumentList[1].value->getHeight(), 2UL);
  EXPECT_EQ(argumentList[1].value->getElementCnt(), 4UL);
  EXPECT_EQ(argumentList[2].ids->getSize(), 2UL);
  // Check value
  simpleValueCheck(argumentList, useGpu);
  // Check sequenceStartPositions
  simpleSequenceCheck(argumentList, 2);
}

TEST(PyDataProvider, py_fill_nest_slots) {
  DataConfig config;
  config.set_type("py");
  config.set_async_load_data(false);
  config.set_load_data_module(std::string("pyDataProvider"));
  config.set_load_data_object(std::string("SimpleNestDataProvider"));
  config.clear_files();
  std::string dataFile = "gserver/tests/pyDataProvider/pyDataProviderList";
  config.set_files(dataFile);
  EXPECT_EQ(config.IsInitialized(), true);
#ifdef PADDLE_ONLY_CPU
  bool useGpu = false;
#else
  bool useGpu = true;
#endif
  unique_ptr<DataProvider> dataProvider(DataProvider::create(config, useGpu));
  DataBatch dataBatch;
  dataProvider->getNextBatchInternal(2, &dataBatch);
  const std::vector<Argument>& argumentList = dataBatch.getStreams();
  // Check size
  EXPECT_EQ(argumentList.size(), 3UL);
  EXPECT_EQ(argumentList[0].value->getWidth(), 3UL);
  EXPECT_EQ(argumentList[0].value->getHeight(), 4UL);
  EXPECT_EQ(argumentList[0].value->getElementCnt(), 12UL);
  EXPECT_EQ(argumentList[1].value->getWidth(), 7UL);
  EXPECT_EQ(argumentList[1].value->getHeight(), 4UL);
  EXPECT_EQ(argumentList[1].value->getElementCnt(), 8UL);
  EXPECT_EQ(argumentList[2].ids->getSize(), 4UL);
  // Check value
  simpleValueCheck(argumentList, useGpu);
  // Check sequenceStartPositions
  simpleSequenceCheck(argumentList, 4);
  // Check subSequenceStartPositions
  EXPECT_EQ(argumentList[0].subSequenceStartPositions->getSize(), 4UL);
  EXPECT_EQ(argumentList[1].subSequenceStartPositions->getSize(), 3UL);
  EXPECT_EQ(argumentList[2].subSequenceStartPositions->getSize(), 4UL);
  for (size_t i = 0; i < argumentList.size(); i++) {
    EXPECT_EQ(argumentList[i].subSequenceStartPositions->getElement(0), 0);
    EXPECT_EQ(argumentList[i].subSequenceStartPositions->getElement(1), 1);
    if (i != 1) {
      EXPECT_EQ(argumentList[i].subSequenceStartPositions->getElement(2), 2);
      EXPECT_EQ(argumentList[i].subSequenceStartPositions->getElement(3), 4);
    } else {
      EXPECT_EQ(argumentList[i].subSequenceStartPositions->getElement(2), 4);
    }
  }
}

void simpleValueCheck(const vector<Argument>& argumentList, bool useGpu) {
  // Dense
  real* data;
  if (useGpu) {
116 117 118 119
    MatrixPtr cpuMatrixPtr = Matrix::create(argumentList[0].value->getHeight(),
                                            argumentList[0].value->getWidth(),
                                            0,
                                            0);
Z
zhangjinchao01 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    cpuMatrixPtr->copyFrom(*argumentList[0].value);
    data = cpuMatrixPtr->getData();
  } else {
    data = argumentList[0].value->getData();
  }
  for (size_t i = 0; i < argumentList[0].value->getElementCnt(); ++i) {
    EXPECT_EQ(*(data + i), (float)(i % 3 + 1));
  }
  // Sparse without value
  GpuSparseMatrixPtr matGpu;
  CpuSparseMatrixPtr matCpu;
  if (useGpu) {
    matGpu = dynamic_pointer_cast<GpuSparseMatrix>(argumentList[1].value);
    ASSERT_TRUE(matGpu != NULL);
  } else {
    data = argumentList[0].value->getData();
    matCpu = dynamic_pointer_cast<CpuSparseMatrix>(argumentList[1].value);
    ASSERT_TRUE(matCpu != NULL);
  }
  for (size_t i = 0; i < argumentList[1].value->getHeight(); ++i) {
    size_t colNum = useGpu ? matGpu->getColNum(i) : matCpu->getColNum(i);
    EXPECT_EQ(colNum, (size_t)2);
    const int* buf = useGpu ? matGpu->getRowCols(i) : matCpu->getRowCols(i);
    for (size_t j = 0; j < colNum; ++j) {
      EXPECT_EQ((size_t)buf[j], (size_t)(j + 1));
    }
  }
  // Index
  for (size_t j = 0; j < argumentList[2].ids->getSize(); ++j) {
    EXPECT_EQ((size_t)argumentList[2].ids->get(j), 0UL);
  }
}

void simpleSequenceCheck(const vector<Argument>& argumentList, int sample_num) {
  EXPECT_EQ(argumentList[0].sequenceStartPositions->getSize(), 3UL);
  EXPECT_EQ(argumentList[1].sequenceStartPositions->getSize(), 2UL);
  EXPECT_EQ(argumentList[2].sequenceStartPositions->getSize(), 3UL);
  for (size_t i = 0; i < argumentList.size(); i++) {
    EXPECT_EQ(argumentList[i].sequenceStartPositions->getElement(0), 0);
    if (i != 1) {
      EXPECT_EQ(argumentList[i].sequenceStartPositions->getElement(1), 1);
      EXPECT_EQ(argumentList[i].sequenceStartPositions->getElement(2),
                sample_num);
    } else {
      EXPECT_EQ(argumentList[i].sequenceStartPositions->getElement(1),
                sample_num);
    }
  }
}

int main(int argc, char** argv) {
  initMain(argc, argv);
  initPython(argc, argv);
  testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}