test_ConvUnify.cpp 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
W
wangyang59 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <string>
Y
Yu Yang 已提交
17
#include <vector>
W
wangyang59 已提交
18
#include "ModelConfig.pb.h"
Y
Yu Yang 已提交
19
#include "paddle/gserver/layers/DataLayer.h"
W
wangyang59 已提交
20 21
#include "paddle/gserver/layers/ExpandConvTransLayer.h"
#include "paddle/math/MathUtils.h"
Y
Yu Yang 已提交
22 23
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"
W
wangyang59 已提交
24 25

#include "LayerGradUtil.h"
Y
Yu Yang 已提交
26
#include "TestUtil.h"
W
wangyang59 已提交
27 28 29 30

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

31 32 33 34 35
DECLARE_bool(use_gpu);
DECLARE_int32(gpu_id);
DECLARE_double(checkgrad_eps);
DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(prev_batch_state);
W
wangyang59 已提交
36 37 38

// Do one forward pass of convTrans layer and check to see if its output
// matches the given result
Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48 49
MatrixPtr doOneConvTest(size_t imgSize,
                        size_t output_x,
                        size_t stride,
                        size_t padding,
                        size_t filter_size,
                        size_t channel,
                        size_t numfilters,
                        size_t groups,
                        MatrixPtr& inputData,
                        real* param,
                        bool useGpu) {
50 51 52 53 54 55 56 57 58 59 60
  TestConfig config;
  config.biasSize = numfilters;
  if (useGpu) {
    config.layerConfig.set_type("cudnn_conv");
  } else {
    config.layerConfig.set_type("exconv");
  }
  config.layerConfig.set_num_filters(numfilters);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

Y
Yu Yang 已提交
61 62 63 64
  size_t weightSize = channel * filter_size * filter_size *
                      config.layerConfig.num_filters() / groups;
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", imgSize * imgSize * channel, weightSize});
65 66 67 68 69 70 71 72 73
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(filter_size);
  conv->set_filter_size_y(filter_size);
  conv->set_channels(channel);
  conv->set_padding(padding);
  conv->set_padding_y(padding);
  conv->set_stride(stride);
  conv->set_stride_y(stride);
74
  conv->set_groups(groups);
Y
Yu Yang 已提交
75
  conv->set_filter_channels(channel / groups);
76 77 78 79 80 81 82 83 84 85
  conv->set_img_size(imgSize);
  conv->set_output_x(output_x);

  config.layerConfig.set_size(conv->output_x() * conv->output_x() *
                              config.layerConfig.num_filters());
  config.layerConfig.set_name("conv");

  std::vector<DataLayerPtr> dataLayers;
  LayerMap layerMap;
  vector<Argument> datas;
Y
Yu Yang 已提交
86 87
  initDataLayer(
      config, &dataLayers, &datas, &layerMap, "conv", 1, false, useGpu);
88 89 90 91 92 93 94 95 96
  dataLayers[0]->getOutputValue()->zeroMem();
  dataLayers[0]->getOutputValue()->copyFrom(*inputData);

  // test layer initialize
  std::vector<ParameterPtr> parameters;
  LayerPtr convLayer;
  initTestLayer(config, &layerMap, &parameters, &convLayer);
  convLayer->getBiasParameter()->zeroMem();
  convLayer->getParameters()[0]->zeroMem();
Y
Yu Yang 已提交
97 98 99
  convLayer->getParameters()[0]
      ->getBuf(PARAMETER_VALUE)
      ->copyFrom(param, weightSize);
100 101 102
  convLayer->forward(PASS_GC);

  return convLayer->getOutputValue();
W
wangyang59 已提交
103 104
}

105
TEST(Layer, convParaUnified) {
Y
Yu Yang 已提交
106 107 108
#ifndef PADDLE_ONLY_CPU
  MatrixPtr input, resultCpu, resultGpu;
  input = Matrix::create(1, 4 * 4, false, false);
P
Peng Li 已提交
109 110
  real inputData[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
  real param[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1};
Y
Yu Yang 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

  input->setData(inputData);

  resultCpu = doOneConvTest(/* imgSize */ 4,
                            /* output_x */ 2,
                            /* stride */ 1,
                            /* padding */ 0,
                            /* filter_size */ 3,
                            /*channel*/ 1,
                            /*numfilters*/ 2,
                            /*groups*/ 1,
                            input,
                            param,
                            false);

  resultGpu = doOneConvTest(/* imgSize */ 4,
                            /* output_x */ 2,
                            /* stride */ 1,
                            /* padding */ 0,
                            /* filter_size */ 3,
                            /*channel*/ 1,
                            /*numfilters*/ 2,
                            /*groups*/ 1,
                            input,
                            param,
                            true);
  checkMatrixEqual(resultCpu, resultGpu);

  input = Matrix::create(1, 3 * 3 * 2, false, false);
P
Peng Li 已提交
140 141
  real inputData2[] = {
      1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18};
P
Peng Li 已提交
142
  real param2[] = {1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1};
Y
Yu Yang 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

  input->setData(inputData2);

  resultCpu = doOneConvTest(/* imgSize */ 3,
                            /* output_x */ 2,
                            /* stride */ 1,
                            /* padding */ 0,
                            /* filter_size */ 2,
                            /*channel*/ 2,
                            /*numfilters*/ 2,
                            /*groups*/ 1,
                            input,
                            param2,
                            false);

  resultGpu = doOneConvTest(/* imgSize */ 3,
                            /* output_x */ 2,
                            /* stride */ 1,
                            /* padding */ 0,
                            /* filter_size */ 2,
                            /*channel*/ 2,
                            /*numfilters*/ 2,
                            /*groups*/ 1,
                            input,
                            param2,
                            true);
  checkMatrixEqual(resultCpu, resultGpu);

P
Peng Li 已提交
171
  real param3[] = {1, 2, 3, 4, 4, 3, 2, 1};
Y
Yu Yang 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

  resultCpu = doOneConvTest(/* imgSize */ 3,
                            /* output_x */ 2,
                            /* stride */ 1,
                            /* padding */ 0,
                            /* filter_size */ 2,
                            /*channel*/ 2,
                            /*numfilters*/ 2,
                            /*groups*/ 2,
                            input,
                            param3,
                            false);

  resultGpu = doOneConvTest(/* imgSize */ 3,
                            /* output_x */ 2,
                            /* stride */ 1,
                            /* padding */ 0,
                            /* filter_size */ 2,
                            /*channel*/ 2,
                            /*numfilters*/ 2,
                            /*groups*/ 2,
                            input,
                            param3,
                            true);
  checkMatrixEqual(resultCpu, resultGpu);
#endif
W
wangyang59 已提交
198 199 200 201 202 203 204 205 206
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  return RUN_ALL_TESTS();
}