test_imperative_transformer.py 43.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
L
lujun 已提交
19 20
from paddle.fluid import Embedding, LayerNorm, FC, Layer
from paddle.fluid.dygraph import to_variable, guard
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
from test_imperative_base import new_program_scope
from paddle.fluid import core
import numpy as np
import six
np.set_printoptions(suppress=True)


# Copy from models
class TrainTaskConfig(object):
    # support both CPU and GPU now.
    use_gpu = True
    # the epoch number to train.
    pass_num = 30
    # the number of sequences contained in a mini-batch.
    # deprecated, set batch_size in args.
    batch_size = 32
    # the hyper parameters for Adam optimizer.
    # This static learning_rate will be multiplied to the LearningRateScheduler
    # derived learning rate the to get the final learning rate.
    learning_rate = 2.0
    beta1 = 0.9
    beta2 = 0.997
    eps = 1e-9
    # the parameters for learning rate scheduling.
    warmup_steps = 8000
    # the weight used to mix up the ground-truth distribution and the fixed
    # uniform distribution in label smoothing when training.
    # Set this as zero if label smoothing is not wanted.
    label_smooth_eps = 0.1
    # the directory for saving trained models.
    model_dir = "trained_models"
    # the directory for saving checkpoints.
    ckpt_dir = "trained_ckpts"
    # the directory for loading checkpoint.
    # If provided, continue training from the checkpoint.
    ckpt_path = None
    # the parameter to initialize the learning rate scheduler.
    # It should be provided if use checkpoints, since the checkpoint doesn't
    # include the training step counter currently.
    start_step = 0
    # the frequency to save trained models.
    save_freq = 10000


class InferTaskConfig(object):
    use_gpu = True
    # the number of examples in one run for sequence generation.
    batch_size = 10
    # the parameters for beam search.
    beam_size = 5
    max_out_len = 256
    # the number of decoded sentences to output.
    n_best = 1
    # the flags indicating whether to output the special tokens.
    output_bos = False
    output_eos = False
    output_unk = True
    # the directory for loading the trained model.
    model_path = "trained_models/pass_1.infer.model"


class ModelHyperParams(object):
    # These following five vocabularies related configurations will be set
    # automatically according to the passed vocabulary path and special tokens.
    # size of source word dictionary.
    src_vocab_size = 10000
    # size of target word dictionay
    trg_vocab_size = 10000
    # index for <bos> token
    bos_idx = 0
    # index for <eos> token
    eos_idx = 1
    # index for <unk> token
    unk_idx = 2
    # max length of sequences deciding the size of position encoding table.
    max_length = 4
    # the dimension for word embeddings, which is also the last dimension of
    # the input and output of multi-head attention, position-wise feed-forward
    # networks, encoder and decoder.
    d_model = 512
    # size of the hidden layer in position-wise feed-forward networks.
    d_inner_hid = 2048
    # the dimension that keys are projected to for dot-product attention.
    d_key = 64
    # the dimension that values are projected to for dot-product attention.
    d_value = 64
    # number of head used in multi-head attention.
    n_head = 8
    # number of sub-layers to be stacked in the encoder and decoder.
    n_layer = 6
    # dropout rates of different modules.
    prepostprocess_dropout = 0.1
    attention_dropout = 0.1
    relu_dropout = 0.1
    # to process before each sub-layer
    preprocess_cmd = "n"  # layer normalization
    # to process after each sub-layer
    postprocess_cmd = "da"  # dropout + residual connection
    # random seed used in dropout for CE.
120
    dropout_seed = None
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    # the flag indicating whether to share embedding and softmax weights.
    # vocabularies in source and target should be same for weight sharing.
    weight_sharing = True


def merge_cfg_from_list(cfg_list, g_cfgs):
    """
    Set the above global configurations using the cfg_list.
    """
    assert len(cfg_list) % 2 == 0
    for key, value in zip(cfg_list[0::2], cfg_list[1::2]):
        for g_cfg in g_cfgs:
            if hasattr(g_cfg, key):
                try:
                    value = eval(value)
                except Exception:  # for file path
                    pass
                setattr(g_cfg, key, value)
                break


def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
    channels = d_pos_vec
    position = np.arange(n_position)
    num_timescales = channels // 2
    log_timescale_increment = (np.log(float(1e4) / float(1)) /
                               (num_timescales - 1))
    inv_timescales = np.exp(np.arange(
        num_timescales)) * -log_timescale_increment
    scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales,
                                                               0)
    signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
    signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant')
    position_enc = signal
    return position_enc.astype("float32")


def create_data(is_static=False):
    if is_static:
        return [
            src_word_np, src_pos_np, src_slf_attn_bias_np, trg_word_np,
            trg_pos_np, trg_slf_attn_bias_np, trg_src_attn_bias_np, lbl_word_np,
            lbl_weight_np
        ]
    else:
        enc_inputs = [
170 171 172 173
            to_variable(
                src_word_np, name='src_word'), to_variable(
                    src_pos_np, name='src_pos'), to_variable(
                        src_slf_attn_bias_np, name='src_slf_attn_bias')
174 175
        ]
        dec_inputs = [
176 177 178 179 180 181
            to_variable(
                trg_word_np, name='trg_word'), to_variable(
                    trg_pos_np, name='trg_pos'), to_variable(
                        trg_slf_attn_bias_np, name='trg_slf_attn_bias'),
            to_variable(
                trg_src_attn_bias_np, name='trg_src_attn_bias')
182
        ]
183 184
        label = to_variable(lbl_word_np, name='lbl_word')
        weight = to_variable(lbl_weight_np, name='lbl_weight')
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        return enc_inputs, dec_inputs, label, weight


def create_feed_dict_list(data, init=False):
    if init:
        data_input_names = encoder_data_input_fields + \
                           decoder_data_input_fields[:-1] + label_data_input_fields + pos_enc_param_names
    else:
        data_input_names = encoder_data_input_fields + \
                           decoder_data_input_fields[:-1] + label_data_input_fields
    feed_dict_list = dict()
    for i in range(len(data_input_names)):
        feed_dict_list[data_input_names[i]] = data[i]
    return feed_dict_list


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
        input_var = fluid.layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0,
            append_batch_size=False)
        inputs.append(input_var)
    return inputs


# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
221
batch_size = -1
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
# The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs = {
    # The actual data shape of src_word is:
    # [batch_size, max_src_len_in_batch, 1]
    "src_word": [(batch_size, seq_len, 1), "int64", 2],
    # The actual data shape of src_pos is:
    # [batch_size, max_src_len_in_batch, 1]
    "src_pos": [(batch_size, seq_len, 1), "int64"],
    # This input is used to remove attention weights on paddings in the
    # encoder.
    # The actual data shape of src_slf_attn_bias is:
    # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
    "src_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
                           seq_len), "float32"],
    # The actual data shape of trg_word is:
    # [batch_size, max_trg_len_in_batch, 1]
    "trg_word": [(batch_size, seq_len, 1), "int64",
                 2],  # lod_level is only used in fast decoder.
    # The actual data shape of trg_pos is:
    # [batch_size, max_trg_len_in_batch, 1]
    "trg_pos": [(batch_size, seq_len, 1), "int64"],
    # This input is used to remove attention weights on paddings and
    # subsequent words in the decoder.
    # The actual data shape of trg_slf_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
    "trg_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
                           seq_len), "float32"],
    # This input is used to remove attention weights on paddings of the source
    # input in the encoder-decoder attention.
    # The actual data shape of trg_src_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
    "trg_src_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
                           seq_len), "float32"],
    # This input is used in independent decoder program for inference.
    # The actual data shape of enc_output is:
    # [batch_size, max_src_len_in_batch, d_model]
    "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
    # The actual data shape of label_word is:
    # [batch_size * max_trg_len_in_batch, 1]
    "lbl_word": [(batch_size * seq_len, 1), "int64"],
    # This input is used to mask out the loss of paddding tokens.
    # The actual data shape of label_weight is:
    # [batch_size * max_trg_len_in_batch, 1]
    "lbl_weight": [(batch_size * seq_len, 1), "float32"],
    # This input is used in beam-search decoder.
    "init_score": [(batch_size, 1), "float32", 2],
    # This input is used in beam-search decoder for the first gather
    # (cell states updation)
    "init_idx": [(batch_size, ), "int32"],
}

# Names of word embedding table which might be reused for weight sharing.
word_emb_param_names = (
    "src_word_emb_table",
    "trg_word_emb_table", )
# Names of position encoding table which will be initialized externally.
pos_enc_param_names = (
    "src_pos_enc_table",
    "trg_pos_enc_table", )
# separated inputs for different usages.
encoder_data_input_fields = (
    "src_word",
    "src_pos",
    "src_slf_attn_bias", )
decoder_data_input_fields = (
    "trg_word",
    "trg_pos",
    "trg_slf_attn_bias",
    "trg_src_attn_bias",
    "enc_output", )
label_data_input_fields = (
    "lbl_word",
    "lbl_weight", )
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields = (
    "trg_word",
    "init_score",
    "init_idx",
    "trg_src_attn_bias", )
# if we use py_reader
use_py_reader = False

# if we run sync mode
sync = False

312
batch_num = 5
313

314
np.random.seed = 90
315 316 317
src_word_np = np.random.randint(
    1,
    ModelHyperParams.src_vocab_size - 1,
318
    size=(TrainTaskConfig.batch_size, seq_len, 1),
319 320
    dtype='int64')
src_pos_np = np.random.randint(
321 322 323 324
    1, seq_len, size=(TrainTaskConfig.batch_size, seq_len, 1), dtype='int64')
src_slf_attn_bias_np = np.random.randn(TrainTaskConfig.batch_size,
                                       ModelHyperParams.n_head, seq_len,
                                       seq_len).astype('float32')
325 326 327 328

trg_word_np = np.random.randint(
    1,
    ModelHyperParams.src_vocab_size - 1,
329
    size=(TrainTaskConfig.batch_size, seq_len, 1),
330 331
    dtype='int64')
trg_pos_np = np.random.randint(
332 333 334 335 336 337 338
    1, seq_len, size=(TrainTaskConfig.batch_size, seq_len, 1), dtype='int64')
trg_slf_attn_bias_np = np.random.randn(TrainTaskConfig.batch_size,
                                       ModelHyperParams.n_head, seq_len,
                                       seq_len).astype('float32')
trg_src_attn_bias_np = np.random.randn(TrainTaskConfig.batch_size,
                                       ModelHyperParams.n_head, seq_len,
                                       seq_len).astype('float32')
339 340 341 342

lbl_word_np = np.random.randint(
    1,
    ModelHyperParams.src_vocab_size - 1,
343
    size=(TrainTaskConfig.batch_size * seq_len, 1),
344
    dtype='int64')
345 346 347

lbl_weight_np = np.random.randn(TrainTaskConfig.batch_size * seq_len,
                                1).astype('float32')
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

pos_inp1 = position_encoding_init(ModelHyperParams.max_length,
                                  ModelHyperParams.d_model)
pos_inp2 = position_encoding_init(ModelHyperParams.max_length,
                                  ModelHyperParams.d_model)


class PrePostProcessLayer(Layer):
    def __init__(self, name_scope, process_cmd, shape_len=None):
        super(PrePostProcessLayer, self).__init__(name_scope)
        for cmd in process_cmd:
            if cmd == "n":
                self._layer_norm = LayerNorm(
                    name_scope=self.full_name(),
                    begin_norm_axis=shape_len - 1,
                    param_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.Constant(1.)),
                    bias_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.Constant(0.)))

    def forward(self, prev_out, out, process_cmd, dropout_rate=0.):
        for cmd in process_cmd:
            if cmd == "a":  # add residual connection
                out = out + prev_out if prev_out else out
            elif cmd == "n":  # add layer normalization
                out = self._layer_norm(out)
            elif cmd == "d":  # add dropout
                if dropout_rate:
                    out = fluid.layers.dropout(
                        out,
                        dropout_prob=dropout_rate,
                        seed=ModelHyperParams.dropout_seed,
                        is_test=False)
        return out


class PositionwiseFeedForwardLayer(Layer):
    def __init__(self, name_scope, d_inner_hid, d_hid, dropout_rate):
        super(PositionwiseFeedForwardLayer, self).__init__(name_scope)
        self._i2h = FC(name_scope=self.full_name(),
                       size=d_inner_hid,
                       num_flatten_dims=2,
                       act="relu")
        self._h2o = FC(name_scope=self.full_name(),
                       size=d_hid,
                       num_flatten_dims=2)
        self._dropout_rate = dropout_rate

    def forward(self, x):
        hidden = self._i2h(x)
        if self._dropout_rate:
            hidden = fluid.layers.dropout(
                hidden,
                dropout_prob=self._dropout_rate,
                seed=ModelHyperParams.dropout_seed,
                is_test=False)
        out = self._h2o(hidden)
        return out


class MultiHeadAttentionLayer(Layer):
    def __init__(self,
                 name_scope,
                 d_key,
                 d_value,
                 d_model,
                 n_head=1,
                 dropout_rate=0.,
                 cache=None,
                 gather_idx=None,
                 static_kv=False):
        super(MultiHeadAttentionLayer, self).__init__(name_scope)
        self._n_head = n_head
        self._d_key = d_key
        self._d_value = d_value
        self._d_model = d_model
        self._dropout_rate = dropout_rate
        self._q_fc = FC(name_scope=self.full_name(),
                        size=d_key * n_head,
                        bias_attr=False,
                        num_flatten_dims=2)
        self._k_fc = FC(name_scope=self.full_name(),
                        size=d_key * n_head,
                        bias_attr=False,
                        num_flatten_dims=2)
        self._v_fc = FC(name_scope=self.full_name(),
                        size=d_value * n_head,
                        bias_attr=False,
                        num_flatten_dims=2)
        self._proj_fc = FC(name_scope=self.full_name(),
                           size=self._d_model,
                           bias_attr=False,
                           num_flatten_dims=2)

    def forward(self, queries, keys, values, attn_bias):
        # compute q ,k ,v
        keys = queries if keys is None else keys
        values = keys if values is None else values

        q = self._q_fc(queries)
        k = self._k_fc(keys)
        v = self._v_fc(values)

        # split head
        reshaped_q = fluid.layers.reshape(
            x=q, shape=[0, 0, self._n_head, self._d_key], inplace=False)
        transpose_q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
        reshaped_k = fluid.layers.reshape(
            x=k, shape=[0, 0, self._n_head, self._d_key], inplace=False)
        transpose_k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3])
        reshaped_v = fluid.layers.reshape(
            x=v, shape=[0, 0, self._n_head, self._d_value], inplace=False)
        transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3])

462
        # scale dot product attention
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
        product = fluid.layers.matmul(
            x=transpose_q,
            y=transpose_k,
            transpose_y=True,
            alpha=self._d_model**-0.5)
        if attn_bias:
            product += attn_bias
        weights = fluid.layers.softmax(product)
        if self._dropout_rate:
            weights_droped = fluid.layers.dropout(
                weights,
                dropout_prob=self._dropout_rate,
                seed=ModelHyperParams.dropout_seed,
                is_test=False)
            out = fluid.layers.matmul(weights_droped, transpose_v)
        else:
            out = fluid.layers.matmul(weights, transpose_v)

        # combine heads
        if len(out.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")
        trans_x = fluid.layers.transpose(out, perm=[0, 2, 1, 3])
        final_out = fluid.layers.reshape(
            x=trans_x,
            shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
            inplace=False)

        # fc to output
        proj_out = self._proj_fc(final_out)
        return proj_out


class EncoderSubLayer(Layer):
    def __init__(self,
                 name_scope,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd="n",
                 postprocess_cmd="da"):

        super(EncoderSubLayer, self).__init__(name_scope)
        self._preprocess_cmd = preprocess_cmd
        self._postprocess_cmd = postprocess_cmd
        self._prepostprocess_dropout = prepostprocess_dropout

        self._preprocess_layer = PrePostProcessLayer(self.full_name(),
                                                     self._preprocess_cmd, 3)
        self._multihead_attention_layer = MultiHeadAttentionLayer(
            self.full_name(), d_key, d_value, d_model, n_head,
            attention_dropout)
        self._postprocess_layer = PrePostProcessLayer(
            self.full_name(), self._postprocess_cmd, None)
        self._preprocess_layer2 = PrePostProcessLayer(self.full_name(),
                                                      self._preprocess_cmd, 3)
        self._positionwise_feed_forward = PositionwiseFeedForwardLayer(
            self.full_name(), d_inner_hid, d_model, relu_dropout)
        self._postprocess_layer2 = PrePostProcessLayer(
            self.full_name(), self._postprocess_cmd, None)

    def forward(self, enc_input, attn_bias):
        pre_process_multihead = self._preprocess_layer(
            None, enc_input, self._preprocess_cmd, self._prepostprocess_dropout)
        attn_output = self._multihead_attention_layer(pre_process_multihead,
                                                      None, None, attn_bias)
        attn_output = self._postprocess_layer(enc_input, attn_output,
                                              self._postprocess_cmd,
                                              self._prepostprocess_dropout)
        pre_process2_output = self._preprocess_layer2(
            None, attn_output, self._preprocess_cmd,
            self._prepostprocess_dropout)
        ffd_output = self._positionwise_feed_forward(pre_process2_output)
        return self._postprocess_layer2(attn_output, ffd_output,
                                        self._postprocess_cmd,
                                        self._prepostprocess_dropout)


class EncoderLayer(Layer):
    def __init__(self,
                 name_scope,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd="n",
                 postprocess_cmd="da"):

        super(EncoderLayer, self).__init__(name_scope)
        self._preprocess_cmd = preprocess_cmd
        self._encoder_sublayers = list()
        self._prepostprocess_dropout = prepostprocess_dropout
        self._n_layer = n_layer
        self._preprocess_layer = PrePostProcessLayer(self.full_name(),
                                                     self._preprocess_cmd, 3)
        for i in range(n_layer):
            self._encoder_sublayers.append(
                self.add_sublayer(
                    'esl_%d' % i,
                    EncoderSubLayer(
                        self.full_name(), n_head, d_key, d_value, d_model,
                        d_inner_hid, prepostprocess_dropout, attention_dropout,
                        relu_dropout, preprocess_cmd, postprocess_cmd)))

    def forward(self, enc_input, attn_bias):
        for i in range(self._n_layer):
            enc_output = self._encoder_sublayers[i](enc_input, attn_bias)
            enc_input = enc_output

        return self._preprocess_layer(None, enc_output, self._preprocess_cmd,
                                      self._prepostprocess_dropout)


class PrepareEncoderDecoderLayer(Layer):
    def __init__(self,
                 name_scope,
                 src_vocab_size,
                 src_emb_dim,
                 src_max_len,
                 dropout_rate,
                 word_emb_param_name=None,
                 pos_enc_param_name=None):
        super(PrepareEncoderDecoderLayer, self).__init__(name_scope)
        self._src_max_len = src_max_len
        self._src_emb_dim = src_emb_dim
        self._src_vocab_size = src_vocab_size
        self._dropout_rate = dropout_rate
        self._input_emb = Embedding(
            name_scope=self.full_name(),
            size=[src_vocab_size, src_emb_dim],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
                initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))

        if pos_enc_param_name is pos_enc_param_names[0]:
            pos_inp = pos_inp1
        else:
            pos_inp = pos_inp2
        self._pos_emb = Embedding(
            name_scope=self.full_name(),
            size=[self._src_max_len, src_emb_dim],
            param_attr=fluid.ParamAttr(
                name=pos_enc_param_name,
                initializer=fluid.initializer.NumpyArrayInitializer(pos_inp),
                trainable=False))

L
lujun 已提交
619
        # use in dygraph_mode to fit different length batch
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        # self._pos_emb._w = to_variable(
        #     position_encoding_init(self._src_max_len, self._src_emb_dim))

    def forward(self, src_word, src_pos):
        src_word_emb = self._input_emb(src_word)
        src_word_emb = fluid.layers.scale(
            x=src_word_emb, scale=self._src_emb_dim**0.5)
        # # TODO change this to fit dynamic length input
        src_pos_emb = self._pos_emb(src_pos)
        src_pos_emb.stop_gradient = True
        enc_input = src_word_emb + src_pos_emb
        return fluid.layers.dropout(
            enc_input,
            dropout_prob=self._dropout_rate,
            seed=ModelHyperParams.dropout_seed,
            is_test=False) if self._dropout_rate else enc_input


class WrapEncoderLayer(Layer):
    def __init__(self, name_cope, src_vocab_size, max_length, n_layer, n_head,
                 d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout,
                 attention_dropout, relu_dropout, preprocess_cmd,
                 postprocess_cmd, weight_sharing):
        """
        The wrapper assembles together all needed layers for the encoder.
        """
        super(WrapEncoderLayer, self).__init__(name_cope)

        self._prepare_encoder_layer = PrepareEncoderDecoderLayer(
            self.full_name(),
            src_vocab_size,
            d_model,
            max_length,
            prepostprocess_dropout,
            word_emb_param_name=word_emb_param_names[0],
            pos_enc_param_name=pos_enc_param_names[0])
        self._encoder = EncoderLayer(
            self.full_name(), n_layer, n_head, d_key, d_value, d_model,
            d_inner_hid, prepostprocess_dropout, attention_dropout,
            relu_dropout, preprocess_cmd, postprocess_cmd)

    def forward(self, enc_inputs):
        src_word, src_pos, src_slf_attn_bias = enc_inputs
        enc_input = self._prepare_encoder_layer(src_word, src_pos)
        enc_output = self._encoder(enc_input, src_slf_attn_bias)
        return enc_output


class DecoderSubLayer(Layer):
    def __init__(self,
                 name_scope,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 cache=None,
                 gather_idx=None):
        super(DecoderSubLayer, self).__init__(name_scope)
        self._postprocess_cmd = postprocess_cmd
        self._preprocess_cmd = preprocess_cmd
        self._prepostprcess_dropout = prepostprocess_dropout
        self._pre_process_layer = PrePostProcessLayer(self.full_name(),
                                                      preprocess_cmd, 3)
        self._multihead_attention_layer = MultiHeadAttentionLayer(
            self.full_name(),
            d_key,
            d_value,
            d_model,
            n_head,
            attention_dropout,
            cache=cache,
            gather_idx=gather_idx)
        self._post_process_layer = PrePostProcessLayer(self.full_name(),
                                                       postprocess_cmd, None)
        self._pre_process_layer2 = PrePostProcessLayer(self.full_name(),
                                                       preprocess_cmd, 3)
        self._multihead_attention_layer2 = MultiHeadAttentionLayer(
            self.full_name(),
            d_key,
            d_value,
            d_model,
            n_head,
            attention_dropout,
            cache=cache,
            gather_idx=gather_idx,
            static_kv=True)
        self._post_process_layer2 = PrePostProcessLayer(self.full_name(),
                                                        postprocess_cmd, None)
        self._pre_process_layer3 = PrePostProcessLayer(self.full_name(),
                                                       preprocess_cmd, 3)
        self._positionwise_feed_forward_layer = PositionwiseFeedForwardLayer(
            self.full_name(), d_inner_hid, d_model, relu_dropout)
        self._post_process_layer3 = PrePostProcessLayer(self.full_name(),
                                                        postprocess_cmd, None)

    def forward(self, dec_input, enc_output, slf_attn_bias, dec_enc_attn_bias):
        pre_process_rlt = self._pre_process_layer(
            None, dec_input, self._preprocess_cmd, self._prepostprcess_dropout)
        slf_attn_output = self._multihead_attention_layer(pre_process_rlt, None,
                                                          None, slf_attn_bias)
        slf_attn_output_pp = self._post_process_layer(
            dec_input, slf_attn_output, self._postprocess_cmd,
            self._prepostprcess_dropout)
        pre_process_rlt2 = self._pre_process_layer2(None, slf_attn_output_pp,
                                                    self._preprocess_cmd,
                                                    self._prepostprcess_dropout)
        enc_attn_output_pp = self._multihead_attention_layer2(
            pre_process_rlt2, enc_output, enc_output, dec_enc_attn_bias)
        enc_attn_output = self._post_process_layer2(
735
            slf_attn_output_pp, enc_attn_output_pp, self._postprocess_cmd,
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
            self._prepostprcess_dropout)
        pre_process_rlt3 = self._pre_process_layer3(None, enc_attn_output,
                                                    self._preprocess_cmd,
                                                    self._prepostprcess_dropout)
        ffd_output = self._positionwise_feed_forward_layer(pre_process_rlt3)
        dec_output = self._post_process_layer3(enc_attn_output, ffd_output,
                                               self._postprocess_cmd,
                                               self._prepostprcess_dropout)
        return dec_output


class DecoderLayer(Layer):
    def __init__(self,
                 name_scope,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 caches=None,
                 gather_idx=None):
        super(DecoderLayer, self).__init__(name_scope)
        self._pre_process_layer = PrePostProcessLayer(self.full_name(),
                                                      preprocess_cmd, 3)
        self._decoder_sub_layers = list()
        self._n_layer = n_layer
        self._preprocess_cmd = preprocess_cmd
        self._prepostprocess_dropout = prepostprocess_dropout
        for i in range(n_layer):
            self._decoder_sub_layers.append(
                self.add_sublayer(
                    'dsl_%d' % i,
                    DecoderSubLayer(
                        self.full_name(),
                        n_head,
                        d_key,
                        d_value,
                        d_model,
                        d_inner_hid,
                        prepostprocess_dropout,
                        attention_dropout,
                        relu_dropout,
                        preprocess_cmd,
                        postprocess_cmd,
                        cache=None if caches is None else caches[i],
                        gather_idx=gather_idx)))

    def forward(self, dec_input, enc_output, dec_slf_attn_bias,
                dec_enc_attn_bias):
        for i in range(self._n_layer):
            tmp_dec_output = self._decoder_sub_layers[i](
                dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias)
            dec_input = tmp_dec_output

        dec_output = self._pre_process_layer(None, tmp_dec_output,
                                             self._preprocess_cmd,
                                             self._prepostprocess_dropout)
        return dec_output


class WrapDecoderLayer(Layer):
    def __init__(self,
                 name_scope,
                 trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 caches=None,
                 gather_idx=None):
        """
        The wrapper assembles together all needed layers for the encoder.
        """
        super(WrapDecoderLayer, self).__init__(name_scope)

        self._prepare_decoder_layer = PrepareEncoderDecoderLayer(
            self.full_name(),
            trg_vocab_size,
            d_model,
            max_length,
            prepostprocess_dropout,
            word_emb_param_name=word_emb_param_names[1],
            pos_enc_param_name=pos_enc_param_names[1])
        self._decoder_layer = DecoderLayer(
            self.full_name(),
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd,
            caches=caches,
            gather_idx=gather_idx)
        self._weight_sharing = weight_sharing
        if not weight_sharing:
            self._fc = FC(self.full_name(),
                          size=trg_vocab_size,
                          bias_attr=False)

    def forward(self, dec_inputs=None, enc_output=None):
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs
        dec_input = self._prepare_decoder_layer(trg_word, trg_pos)
        dec_output = self._decoder_layer(dec_input, enc_output,
                                         trg_slf_attn_bias, trg_src_attn_bias)

        dec_output_reshape = fluid.layers.reshape(
            dec_output, shape=[-1, dec_output.shape[-1]], inplace=False)

        if self._weight_sharing:
            predict = fluid.layers.matmul(
                x=dec_output_reshape,
                y=self._prepare_decoder_layer._input_emb._w,
                transpose_y=True)
        else:
            predict = self._fc(dec_output_reshape)

        if dec_inputs is None:
            # Return probs for independent decoder program.
            predict_out = fluid.layers.softmax(predict)
            return predict_out
        return predict


class TransFormer(Layer):
    def __init__(self,
                 name_scope,
                 src_vocab_size,
                 trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 label_smooth_eps,
                 use_py_reader=False,
                 is_test=False):
        super(TransFormer, self).__init__(name_scope)
        self._label_smooth_eps = label_smooth_eps
        self._trg_vocab_size = trg_vocab_size
        if weight_sharing:
            assert src_vocab_size == trg_vocab_size, (
                "Vocabularies in source and target should be same for weight sharing."
            )
        self._wrap_encoder_layer = WrapEncoderLayer(
            self.full_name(), src_vocab_size, max_length, n_layer, n_head,
            d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout,
            attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd,
            weight_sharing)
        self._wrap_decoder_layer = WrapDecoderLayer(
            self.full_name(), trg_vocab_size, max_length, n_layer, n_head,
            d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout,
            attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd,
            weight_sharing)

        if weight_sharing:
            self._wrap_decoder_layer._prepare_decoder_layer._input_emb._w = self._wrap_encoder_layer._prepare_encoder_layer._input_emb._w

    def forward(self, enc_inputs, dec_inputs, label, weights):
        enc_output = self._wrap_encoder_layer(enc_inputs)
        predict = self._wrap_decoder_layer(dec_inputs, enc_output)
        if self._label_smooth_eps:
            label_out = fluid.layers.label_smooth(
                label=fluid.layers.one_hot(
                    input=label, depth=self._trg_vocab_size),
                epsilon=self._label_smooth_eps)

        cost = fluid.layers.softmax_with_cross_entropy(
            logits=predict,
            label=label_out,
            soft_label=True if self._label_smooth_eps else False)
        weighted_cost = cost * weights
        sum_cost = fluid.layers.reduce_sum(weighted_cost)
        token_num = fluid.layers.reduce_sum(weights)
        token_num.stop_gradient = True
        avg_cost = sum_cost / token_num
        return sum_cost, avg_cost, predict, token_num


L
lujun 已提交
942
class TestDygraphTransformer(unittest.TestCase):
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
    def test_transformer_float32(self):
        seed = 90
        with guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            transformer = TransFormer(
                'transformer',
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                use_py_reader=use_py_reader,
                is_test=False)
            if sync:
                lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
                    ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)
                with fluid.default_main_program()._lr_schedule_guard():
                    learning_rate = lr_decay * TrainTaskConfig.learning_rate
                optimizer = fluid.optimizer.Adam(
                    learning_rate=learning_rate,
                    beta1=TrainTaskConfig.beta1,
                    beta2=TrainTaskConfig.beta2,
                    epsilon=TrainTaskConfig.eps)
            else:
                optimizer = fluid.optimizer.SGD(learning_rate=0.003)
            dy_param_init = dict()
            dy_param_updated = dict()
            for i in range(batch_num):
                enc_inputs, dec_inputs, label, weights = create_data()
                dy_sum_cost, dy_avg_cost, dy_predict, dy_token_num = transformer(
                    enc_inputs, dec_inputs, label, weights)
986

987 988
                if i == 0:
                    for param in transformer.parameters():
L
lujun 已提交
989
                        dy_param_init[param.name] = param.numpy()
990

L
lujun 已提交
991
                dy_avg_cost.backward()
992 993
                optimizer.minimize(dy_avg_cost)
                transformer.clear_gradients()
994

995 996
                if i == batch_num - 1:
                    for param in transformer.parameters():
L
lujun 已提交
997
                        dy_param_updated[param.name] = param.numpy()
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            transformer = TransFormer(
                'transformer',
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                use_py_reader=use_py_reader,
                is_test=False)
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            optimizer = fluid.optimizer.SGD(learning_rate=0.003)

            data_input_names = encoder_data_input_fields + decoder_data_input_fields[:
                                                                                     -1] + label_data_input_fields
            all_inputs = make_all_inputs(data_input_names)
            enc_inputs_len = len(encoder_data_input_fields)
            dec_inputs_len = len(decoder_data_input_fields[:-1])
            enc_inputs = all_inputs[0:enc_inputs_len]
            dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len +
                                    dec_inputs_len]
            label = all_inputs[-2]
            weights = all_inputs[-1]
            static_param_updated = dict()
            static_param_init = dict()
            static_param_name_list = list()
            static_sum_cost, static_avg_cost, static_predict, static_token_num = transformer(
                enc_inputs, dec_inputs, label, weights)
            optimizer.minimize(static_avg_cost)
            for param in transformer.parameters():
                static_param_name_list.append(param.name)
            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
            static_sum_cost_value = None
            static_avg_cost_value = None
            static_predict_value = None
            static_token_num_value = None
            for i in range(batch_num):
                feed_dict = create_feed_dict_list(create_data(True))
                fetch_list = [
                    static_sum_cost, static_avg_cost, static_predict,
                    static_token_num
                ]

1059
                fetch_list.extend(static_param_name_list)
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
                out = exe.run(fluid.default_main_program(),
                              feed=feed_dict,
                              fetch_list=fetch_list)
                static_sum_cost_value = out[0]
                static_avg_cost_value = out[1]
                static_predict_value = out[2]
                static_token_num_value = out[3]
                if i == batch_num - 1:
                    for k in range(4, len(out)):
                        static_param_updated[static_param_name_list[k -
                                                                    4]] = out[k]

        self.assertTrue(
L
lujun 已提交
1073
            np.array_equal(static_avg_cost_value, dy_avg_cost.numpy()))
1074
        self.assertTrue(
L
lujun 已提交
1075
            np.array_equal(static_sum_cost_value, dy_sum_cost.numpy()))
1076
        self.assertTrue(
L
lujun 已提交
1077
            np.array_equal(static_predict_value, dy_predict.numpy()))
1078
        self.assertTrue(
L
lujun 已提交
1079
            np.array_equal(static_token_num_value, dy_token_num.numpy()))
1080
        for key, value in six.iteritems(static_param_init):
1081
            self.assertTrue(np.array_equal(value, dy_param_init[key]))
1082
        for key, value in six.iteritems(static_param_updated):
1083
            self.assertTrue(np.array_equal(value, dy_param_updated[key]))
1084 1085 1086 1087


if __name__ == '__main__':
    unittest.main()