gradient_checker.py 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
Jiawei Wang 已提交
14
"""This is the lib for gradient checker unittest."""
15 16 17 18 19 20 21 22

from __future__ import print_function

import unittest
import six
import collections
import numpy as np
from itertools import product
23
import paddle
24 25 26 27 28

import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
from paddle.fluid.backward import _append_grad_suffix_, _as_list
29
from paddle.fluid.framework import _test_eager_guard
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62


def _product(t):
    if isinstance(t, int):
        return t
    else:
        return np.product(t)


def dtype_to_np_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return np.float32
    elif dtype == core.VarDesc.VarType.FP64:
        return np.float64
    elif dtype == core.VarDesc.VarType.FP16:
        return np.float16
    else:
        raise ValueError("Not supported data type " + str(dtype))


def _get_item(t, i, np_dtype):
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        np_t = np_t.flatten()
        return np_t[i]
    elif np_dtype == np.float32:
        return t._get_float_element(i)
    elif np_dtype == np.float64:
        return t._get_double_element(i)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


63 64 65 66 67 68 69 70 71 72 73 74 75
def _get_item_for_dygraph(t, i, np_dtype):
    if np_dtype == np.float16:
        np_t = t.numpy().astype(np.float16)
    elif np_dtype == np.float32:
        np_t = t.numpy().astype(np.float32)
    elif np_dtype == np.float64:
        np_t = t.numpy().astype(np.float64)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))
    np_t = np_t.flatten()
    return np_t[i]


76 77 78 79 80 81
def _set_item(t, i, e, np_dtype):
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        shape = np_t.shape
        np_t = np_t.flatten()
        np_t[i] = e
82
        np_t = np_t.reshape(shape)
83 84 85 86 87 88 89 90 91
        t.set(np_t, place)
    elif np_dtype == np.float32:
        t._set_float_element(i, e)
    elif np_dtype == np.float64:
        t._set_double_element(i, e)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
def _set_item_for_dygraph(t, i, e, np_dtype):
    if np_dtype == np.float16:
        np_t = t.numpy().astype(np.float16)
    elif np_dtype == np.float32:
        np_t = t.numpy().astype(np.float32)
    elif np_dtype == np.float64:
        np_t = t.numpy().astype(np.float64)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))
    shape = np_t.shape
    np_t = np_t.flatten()
    np_t[i] = e
    np_t = np_t.reshape(shape)
    paddle.assign(np_t, t)


108 109 110 111 112 113 114 115
def set_var_in_scope(scope, place, name, value, recursive_seq_len=None):
    t = scope.var(name).get_tensor()
    t.set(value, place)
    if recursive_seq_len:
        t.set_recursive_sequence_lengths(recursive_seq_len)
    return t


Q
qingqing01 已提交
116 117 118 119
def var_to_np_array_in_scope(scope, place, name):
    return np.array(scope.var(name).get_tensor())


120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
def make_jacobian(x, y_size, np_dtype):
    if isinstance(x, fluid.framework.Variable):
        return np.zeros((_product(x.shape), y_size), dtype=np_dtype)
    elif isinstance(x, collections.Sequence):
        jacobians = list(
            filter(lambda t: t is not None, (make_jacobian(
                item, y_size, np_dtype) for item in x)))
        return jacobians
    else:
        None


def _compute_numerical_jacobian(program, x, y, place, scope, delta):
    """Computes the numeric Jacobian for dy/dx.

    Computes the numeric Jacobian by slightly perturbing the inputs and
    measuring the differences on the output.

    Args:
        program (Program): the network program.
        x (Variable): the input variables.
        y (list[Variable]): the output variables.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.
        delta: the amount of perturbation we give to the input

    Returns:
        A list of 2-D numpy array, the list length is len(y).
        Each 2-D numpy array represents the Jacobian for dy_i/dx.
        It has "x_size" rows and "y_size" columns
        where "x_size" is the number of elements in x and
        "y_size" is the number of elements in each y_i.
    """
    if not isinstance(x, fluid.framework.Variable):
        raise TypeError('x is not Variable')

    # To compute the jacobian, treat x and y as one-dimensional vectors.
    y = _as_list(y)
    exe = fluid.Executor(place)

    def run():
        y_res = exe.run(program, scope=scope, fetch_list=y)
        return [yi.flatten() for yi in y_res]

    x_name = x.name
    x_shape = x.shape
    x_size = _product(x_shape)
    x_t = scope.find_var(x_name).get_tensor()

    np_type = dtype_to_np_dtype(x.dtype)
    jacobian = [make_jacobian(x, _product(yi.shape), np_type) for yi in y]

172 173
    if np_type == np.float64:
        delta = 1e-5
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    for i in six.moves.xrange(x_size):
        orig = _get_item(x_t, i, np_type)
        x_pos = orig + delta
        _set_item(x_t, i, x_pos, np_type)
        y_pos = run()

        x_neg = orig - delta
        _set_item(x_t, i, x_neg, np_type)
        y_neg = run()

        _set_item(x_t, i, orig, np_type)

        for j in six.moves.xrange(len(y)):
            jacobian[j][i, :] = (y_pos[j] - y_neg[j]) / delta / 2.

    return jacobian


def _compute_analytical_jacobian(program, x, y, place, scope):
    """Computes the analytical Jacobian for dy/dx.

    Args:
        program (Program): a Program with forward pass.
        x (Variable|list[Variable]): a variable or list of variable
        y (Variable): the target variable.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.

    Returns:
        A list of 2-D numpy array. The list length is len(x).
        Each 2-D numpy array represents the Jacobian for dy/dx_i.
        It has "xi_size" rows and "dy_size" columns
        where "x_size" is the number of elements in x_i and
        "dy_size" is the number of elements in y.
    """
    if not isinstance(y, fluid.framework.Variable):
        raise TypeError('y is not Variable')

    dy_name = _append_grad_suffix_(y.name)

    np_type = dtype_to_np_dtype(y.dtype)
    # create dy Variable in Program
    dy = program.global_block().create_var(
        name=dy_name, shape=y.shape, dtype=np_type, persistable=True)
    # append backward
219
    dx = fluid.gradients(y, x, dy)
220 221 222 223 224 225 226 227 228 229 230 231

    # init dy tensor in scope
    value = np.zeros(y.shape, dtype=np_type)
    dy_t = set_var_in_scope(scope, place, dy_name, value)

    exe = fluid.Executor(place)

    y_size = _product(y.shape)

    x = _as_list(x)
    jacobian = make_jacobian(x, y_size, np_type)

232 233 234 235 236
    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(dx) if dxi is not None]
    filted_idx, filted_dx = zip(*filted)

237 238 239
    for i in six.moves.xrange(y_size):
        _set_item(dy_t, i, 1, np_type)

240
        dx_res = exe.run(program, scope=scope, fetch_list=filted_dx)
241

242 243
        for j in six.moves.xrange(len(filted_dx)):
            dx_idx = filted_idx[j]
Q
qingqing01 已提交
244
            if dx_res[j] is not None:
245
                jacobian[dx_idx][:, i] = dx_res[j].flatten()
Q
qingqing01 已提交
246
            else:
247 248
                jacobian[dx_idx][:, i] = np.zeros(
                    dx[dx_idx].shape, dtype=np_type).flatten()
Q
qingqing01 已提交
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        _set_item(dy_t, i, 0, np_type)

    return jacobian


def grad_check(x,
               y,
               x_init=None,
               place=None,
               program=None,
               eps=1e-6,
               atol=1e-5,
               rtol=1e-3,
               raise_exception=True):
    """
    Check numerical and analytical gradients for dy/dx.
    Each Jacobian gradients is a 2-D array with shape [xi_size, yi_size].

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)
Q
qingqing01 已提交
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
            raise ValueError('len(x_init) (=%d) is not the same'
                             ' as len(x) (= %d)' % (len(x_init), len(x)))
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    # [x_idx, y_idx]
    numerical = [
        _compute_numerical_jacobian(program, xi, y, place, scope, eps)
        for xi in x
    ]

    # [y_idx, x_idx]
Q
qingqing01 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    analytical = []
    for yi in y:
        prog = program.clone()

        clone_x = []
        clone_y = None
        for b in prog.blocks:
            if b.has_var(yi.name):
                clone_y = b.var(yi.name)
                break
        for xi in x:
            for b in prog.blocks:
                if b.has_var(xi.name):
                    clone_x.append(b.var(xi.name))
                    break
        analytical.append(
            _compute_analytical_jacobian(prog, clone_x, clone_y, place, scope))
342 343

    for i, (x_idx,
344
            y_idx) in enumerate(product(*[range(len(x)), range(len(y))])):
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        a = analytical[y_idx][x_idx]
        n = numerical[x_idx][y_idx]
        if not np.allclose(a, n, rtol, atol):
            msg = 'Jacobian mismatch for output %s ' \
                  'with respect to input %s on %s,\n' \
                  'numerical:%s\nanalytical:%s\n' \
                  % (y[y_idx].name, x[x_idx].name, str(place), n, a)
            return fail_test(msg)
    return True


def double_grad_check(x,
                      y,
                      x_init=None,
                      y_grads=None,
                      place=None,
                      program=None,
                      eps=1e-6,
                      atol=1e-5,
                      rtol=1e-3,
                      raise_exception=True):
    """
    Check gradients of gradients. This function will append backward to the
    program before second order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
Q
qingqing01 已提交
399
        y_grads_init = []
400 401 402 403 404 405 406 407 408
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
            dy = program.global_block().create_var(
                name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True)
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
Q
qingqing01 已提交
409
            y_grads_init.append(v)
410 411
    else:
        y_grads = _as_list(y_grads)
Q
qingqing01 已提交
412 413 414
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]
415 416

    # append first order grads
417
    target_grads = fluid.gradients(y, x, y_grads)
Q
qingqing01 已提交
418 419 420 421 422 423 424

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

425
    grad_check(x, target_grads, x_init, place, program, eps, atol, rtol)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524


# TODO(jiabin): We currently support only triple grad check here, extend this to support 
# higher order differenciation later.


# check triple grad and two outputs of the triple Kernel
def triple_grad_check(x,
                      y,
                      x_init=None,
                      y_grads=None,
                      x_grads_grads=None,
                      place=None,
                      program=None,
                      eps=1e-6,
                      atol=1e-5,
                      rtol=1e-3,
                      raise_exception=True):
    """
    Check triple gradients. This function will append backward to the
    program before third order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        x_grads_grads (numpy.array|list[numpy.array]|None): the gradients with respect to your input.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
        y_grads_init = []
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
            dy = program.global_block().create_var(
                name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True)
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
            y_grads_init.append(v)
    else:
        y_grads = _as_list(y_grads)
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]

    # append first order grads
    target_grads = fluid.gradients(y, x, y_grads)

    if x_grads_grads is None:
        scope = fluid.executor.global_scope()
        x_grads_grads = []
        x_grads_grads_init = []
        for dxi in target_grads:
            ddxi_name = _append_grad_suffix_(dxi.name)
            np_type = dtype_to_np_dtype(dxi.dtype)
            ddx = program.global_block().create_var(
                name=ddxi_name,
                shape=dxi.shape,
                dtype=np_type,
                persistable=True)
            ddx.stop_gradient = False
            v = np.random.random(size=dxi.shape).astype(np_type)
            set_var_in_scope(scope, place, ddxi_name, v)
            x_grads_grads.append(ddx)
            x_grads_grads_init.append(v)
    else:
        x_grads_grads = _as_list(x_grads_grads)
        x_grads_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name)
            for v in x_grads_grads
        ]
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

525 526 527 528 529 530 531 532
    # append second order grads
    target_grads_grads = fluid.gradients(target_grads, x, x_grads_grads)

    # filter None in target_grads_grads for Dy/Dx may be None in kernel
    filted = [(i, dyi) for i, dyi in enumerate(target_grads_grads)
              if dyi is not None]
    filted_idx, filted_target_grads_grads = zip(*filted)

533 534 535 536 537 538
    x += x_grads_grads
    x_init += x_grads_grads_init

    # x <=> [x, dout, ddx]
    grad_check(
        x=x,
539
        y=filted_target_grads_grads,
540 541 542 543 544 545
        x_init=x_init,
        place=place,
        program=program,
        eps=eps,
        atol=atol,
        rtol=rtol)
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736


def get_static_double_grad(x, y, x_init=None, dy_init=None, place=None):
    """
    Get Double Grad result of static graph.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
    Returns:
        A list of numpy array that stores second derivative result calulated by static graph.
    """

    program = fluid.default_main_program()
    scope = fluid.executor.global_scope()
    y_grads = []
    for i in six.moves.xrange(len(y)):
        yi = y[i]
        dyi_name = _append_grad_suffix_(yi.name)
        np_type = dtype_to_np_dtype(yi.dtype)
        dy = program.global_block().create_var(
            name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True)
        dy.stop_gradient = False
        set_var_in_scope(scope, place, dyi_name, dy_init[i])
        y_grads.append(dy)

    # append first order grads
    dx = fluid.gradients(y, x, y_grads)

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init += dy_init
    y = dx

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)

    for v in x:
        v.stop_gradient = False
        v.persistable = True
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
            raise ValueError('len(x_init) (=%d) is not the same'
                             ' as len(x) (= %d)' % (len(x_init), len(x)))
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    dys = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        dy_name = _append_grad_suffix_(yi.name)
        # create dy Variable in Program
        dy = program.global_block().create_var(
            name=dy_name, shape=yi.shape, dtype=np_type, persistable=True)
        # init dy tensor in scope
        value = np.ones(yi.shape, dtype=np_type)
        dy_t = set_var_in_scope(scope, place, dy_name, value)
        dys.append(dy)

    # append second order backward
    ddx = fluid.gradients(y, x, dys)
    exe = fluid.Executor(place)

    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(ddx) if dxi is not None]
    filted_idx, filted_ddx = zip(*filted)
    ddx_res = exe.run(program, scope=scope, fetch_list=filted_ddx)

    return ddx_res


def get_eager_double_grad(func, x_init=None, dy_init=None):
    """
    Get Double Grad result of dygraph.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
    Returns:
        A list of numpy array that stores second derivative result calulated by dygraph
    """
    inputs = []
    dys = []
    for x in x_init:
        input_tensor = paddle.to_tensor(x)
        input_tensor.stop_gradient = False
        inputs.append(input_tensor)
    for dy in dy_init:
        dy_tensor = paddle.to_tensor(dy)
        dy_tensor.stop_gradient = False
        dys.append(dy_tensor)
    # calculate first derivative
    outputs = func(inputs)
    d_inputs = paddle.grad(
        outputs=outputs, inputs=inputs, grad_outputs=dys, create_graph=True)

    # calcluate second derivative
    inputs = inputs + dys
    ddys = []
    for d_input in d_inputs:
        d_input.stop_gradient = False
        ddy = paddle.ones(shape=d_input.shape, dtype=d_input.dtype)
        ddy.stop_gradient = False
        ddys.append(ddy)
    dd_inputs = paddle.grad(outputs=d_inputs, inputs=inputs, grad_outputs=ddys)
    return [dd_input.numpy() for dd_input in dd_inputs]


def double_grad_check_for_dygraph(func,
                                  x,
                                  y,
                                  x_init=None,
                                  place=None,
                                  atol=1e-5,
                                  rtol=1e-3,
                                  raise_exception=True):
    """
    Check gradients of gradients. This function will append backward to the
    program before second order gradient check.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)

    y_grads_init = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        v = np.random.random(size=yi.shape).astype(np_type)
        y_grads_init.append(v)

    x_init = _as_list(x_init)

    paddle.disable_static()
    with _test_eager_guard():
        eager_double_grad = get_eager_double_grad(func, x_init, y_grads_init)
    paddle.enable_static()

    static_double_grad = get_static_double_grad(x, y, x_init, y_grads_init,
                                                place)

    for i in six.moves.xrange(len(static_double_grad)):
        if not np.allclose(static_double_grad[i], eager_double_grad[i], rtol,
                           atol):
            msg = 'Check eager double result fail. Mismatch between static_graph double grad %s ' \
                'and eager double grad %s on %s,\n' \
                'static:%s\n eager:%s\n' \
                % (static_double_grad[i].name, eager_double_grad[i].name, str(place), static_double_grad[i], eager_double_grad[i])
            return fail_test(msg)