elementwise_kernel.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
YuanRisheng 已提交
15
#include "paddle/phi/kernels/cpu/elementwise.h"
16
#include "paddle/phi/backends/cpu/cpu_context.h"
Y
YuanRisheng 已提交
17 18
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
19 20 21
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/elementwise_kernel_impl.h"

Y
YuanRisheng 已提交
22 23
namespace phi {

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
template <typename T, typename Context>
void MaximumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::MaximumFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::MaximumFunctor<T>(), out);
}

template <typename T, typename Context>
void MinimumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::MinimumFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::MinimumFunctor<T>(), out);
}

template <typename T, typename Context>
void ModuloRawKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis,
                     DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims.size() >= y_dims.size()) {
    funcs::ElementwiseCompute<funcs::ModuloFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::ModuloFunctor<T>(), out);
  } else {
    funcs::ElementwiseCompute<funcs::InverseModuloFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::InverseModuloFunctor<T>(), out);
  }
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
template <typename T, typename Context>
void FloorDivideRawKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          int axis,
                          DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  if (x_dims.size() >= y_dims.size()) {
    funcs::ElementwiseCompute<funcs::FloorDivideFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::FloorDivideFunctor<T>(), out);
  } else {
    funcs::ElementwiseCompute<funcs::InverseFloorDivideFunctor<T>, T>(
        dev_ctx, x, y, axis, funcs::InverseFloorDivideFunctor<T>(), out);
  }
}

template <typename T, typename Context>
void ElementwisePowRawKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             int axis,
                             DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::ElementwisePowFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::ElementwisePowFunctor<T>(), out);
}
Y
YuanRisheng 已提交
97

98 99 100 101 102 103 104 105 106 107 108 109
template <typename T, typename Context>
void ElementwiseHeavisideRawKernel(const Context& dev_ctx,
                                   const DenseTensor& x,
                                   const DenseTensor& y,
                                   int axis,
                                   DenseTensor* out) {
  // allocate memory for out
  dev_ctx.template Alloc<T>(out);
  funcs::ElementwiseCompute<funcs::ElementwiseHeavisideFunctor<T>, T>(
      dev_ctx, x, y, axis, funcs::ElementwiseHeavisideFunctor<T>(), out);
}

Y
YuanRisheng 已提交
110 111 112 113 114 115 116 117
}  // namespace phi

using complex64 = ::phi::dtype::complex<float>;
using complex128 = ::phi::dtype::complex<double>;

// NOTE(chenweihang): using bfloat16 will cause redefine with xpu bfloat16
// using bfloat16 = ::phi::dtype::bfloat16;

Y
YuanRisheng 已提交
118 119
PD_REGISTER_KERNEL(
    fmax, CPU, ALL_LAYOUT, phi::FMaxKernel, float, double, int, int64_t) {}
120

Y
YuanRisheng 已提交
121 122
PD_REGISTER_KERNEL(
    fmin, CPU, ALL_LAYOUT, phi::FMinKernel, float, double, int, int64_t) {}
Y
YuanRisheng 已提交
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
PD_REGISTER_KERNEL(maximum_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::MaximumRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(minimum_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::MinimumRawKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(modulo_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::ModuloRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
150 151 152 153 154 155 156 157 158 159 160 161 162 163
PD_REGISTER_KERNEL(floor_divide_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::FloorDivideRawKernel,
                   int,
                   int64_t) {}
PD_REGISTER_KERNEL(elementwise_pow_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwisePowRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
164 165 166 167 168 169 170 171
PD_REGISTER_KERNEL(elementwise_heaviside_raw,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseHeavisideRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}