fleet_meta_optimizer_base.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
from paddle import fluid
import os
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker


class TestFleetMetaOptimizer(unittest.TestCase):
    def setUp(self):
        os.environ["PADDLE_TRAINER_ID"] = "1"
        os.environ[
            "PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.1:36002"

    def net(self, main_prog, startup_prog):
        with fluid.program_guard(main_prog, startup_prog):
            with fluid.unique_name.guard():
                role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                fleet.init(role)
                input_x = paddle.fluid.layers.data(
                    name="x", shape=[32], dtype='float32')
                input_y = paddle.fluid.layers.data(
                    name="y", shape=[1], dtype='int64')

                fc_1 = paddle.fluid.layers.fc(input=input_x,
                                              size=64,
                                              act='tanh')
                fc_2 = paddle.fluid.layers.fc(input=fc_1, size=256, act='tanh')
                prediction = paddle.fluid.layers.fc(input=[fc_2],
                                                    size=2,
                                                    act='softmax')
                cost = paddle.fluid.layers.cross_entropy(
                    input=prediction, label=input_y)
                avg_cost = paddle.fluid.layers.mean(x=cost)

                strategy = paddle.distributed.fleet.DistributedStrategy()
        return avg_cost, strategy

    def optimizer(self,
                  loss,
                  strategy,
                  train_prog,
                  startup_prog,
                  name='momentum'):
        with fluid.program_guard(train_prog, startup_prog):
            with fluid.unique_name.guard():
                if name == 'momentum':
                    optimizer = paddle.fluid.optimizer.Momentum(
                        learning_rate=0.01, momentum=0.9)
                elif name == 'adam':
                    optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(
                    optimizer, strategy=strategy)
                optimizer.minimize(loss)

    def set_strategy(self, strategy, name):
        if name == 'amp':
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "decr_every_n_nan_or_inf": 2,
                "incr_every_n_steps": 1000,
                "incr_ratio": 2.0,
                "use_dynamic_loss_scaling": True,
                "decr_ratio": 0.5,
                "custom_white_list": ['softmax'],
                "custom_black_list": ['tanh'],
            }
        elif name == 'dgc':
            strategy.dgc = True
            strategy.dgc_configs = {
                "rampup_begin_step": 128,
                "rampup_step": 100,
                "sparsity": [0.996, 0.999]
            }
        elif name == 'recompute':
            strategy.recompute = True
            strategy.recompute_configs = {
                "checkpoints": ["fc_0.tmp_2", "fc_1.tmp_2"]
            }
        elif name == 'lars':
            strategy.lars = True
            strategy.lars_configs = {
                "lars_coeff": 0.001,
                "lars_weight_decay": 0.0005,
                "epsilon": 0,
                "exclude_from_weight_decay": ["batch_norm", ".b"],
            }
        elif name == 'lamb':
            strategy.lamb = True
            strategy.lamb_configs = {
                'lamb_weight_decay': 0.01,
                'exclude_from_weight_decay': [],
            }
        elif name == 'localsgd':
            strategy.localsgd = True
            strategy.localsgd_configs = {
                'k_steps': 1,
                'begin_step': 1,
            }
        elif name == 'adaptive_localsgd':
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {
                'init_k_steps': 1,
                'begin_step': 1,
            }
121 122 123
        elif name == "gradient_merge":
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 2, "avg": True}
124 125
        else:
            raise NotImplementedError()