data_feeder.py 20.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
Y
Yu Yang 已提交
18
import numpy
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
Y
Yu Yang 已提交
23

24
from .framework import Variable, default_main_program, _current_expected_place
C
chengduo 已提交
25
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
26 27 28
__all__ = ['DataFeeder']


S
sneaxiy 已提交
29
def convert_dtype(dtype):
30 31
    if isinstance(dtype, str):
        if dtype in [
32 33
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
                'int32', 'int64', 'uint8'
34 35
        ]:
            return dtype
S
sneaxiy 已提交
36
    else:
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
    raise ValueError(
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
        "int32, int64, uint8]")
S
sneaxiy 已提交
58 59


Y
Yu Yang 已提交
60 61 62 63 64
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
65 66 67 68 69 70 71
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
72 73
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
74

S
sneaxiy 已提交
75
    def _reset(self):
Y
Yu Yang 已提交
76
        self.data = []
S
sneaxiy 已提交
77
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
78 79 80 81 82 83 84 85

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
86
            lod[0].append(len(data))
Y
Yu Yang 已提交
87
            for each_data in data:
K
Kexin Zhao 已提交
88
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
89

S
sneaxiy 已提交
90
    def _check_shape(self, shape):
S
sneaxiy 已提交
91 92 93 94 95 96
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
97
    def done(self):
98
        arr = numpy.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
99 100
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
101 102 103 104 105 106
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
107 108 109
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
110
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
111
        self._reset()
Y
Yu Yang 已提交
112 113 114
        return t


S
sneaxiy 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
153
class DataFeeder(object):
C
chengduoZH 已提交
154
    """
C
chengduoZH 已提交
155
    DataFeeder converts the data that returned by a reader into a data
156 157 158 159 160 161 162 163 164 165 166 167 168 169
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
170 171

    Raises:
172
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
173

174
    Example:
175 176 177 178 179 180
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
181
            place = fluid.CPUPlace()
182
            def reader():
183 184
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
185 186 187 188 189
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
190 191
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
192 193 194
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
195
            
196 197
            exe = fluid.Executor(place)
            exe.run(startup_program)
198 199 200 201 202 203 204 205 206 207 208
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
            print(outs)
209

C
chengduoZH 已提交
210 211
    """

F
fengjiayi 已提交
212
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
213 214 215 216
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
217 218
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
219
        for each_var in feed_list:
220
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
221
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
222 223 224 225 226
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
227
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
228 229 230 231

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
232
        """
233 234
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
235

236 237
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
238

239 240
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
241

242
        Example:
243 244
            ..  code-block:: python

245 246 247 248 249 250
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
251 252 253
                import paddle.fluid as fluid
                
                def reader(limit=5):
254 255
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
256
                
257 258 259
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
260 261
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
262 263 264 265 266 267
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
                print(result['data_3'])

C
chengduoZH 已提交
268
        """
Y
Yu Yang 已提交
269
        converter = []
270
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
271 272 273 274 275 276 277 278 279
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
280
            assert len(each_sample) == len(converter), (
281 282
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
283 284
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
285 286
                each_converter.feed(each_slot)
        ret_dict = {}
287 288
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
289 290
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
291 292

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
293
        """
294 295 296
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
        generator in the list will be fed into a seperate device.        
C
chengduoZH 已提交
297

298 299 300 301 302
        Parameters:
            iterable (list|tuple): list of user-defined python geneators. The element 
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
303

304 305 306
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
307

308 309
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
310

311
        Example:
312 313
            ..  code-block:: python

314
                import numpy as np
315
                import paddle.fluid as fluid
316 317 318 319 320 321 322 323 324 325 326 327

                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

                z = fluid.layers.elementwise_add(x, y)

328
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
329
                place_num = 2
330 331 332 333 334
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
335 336 337 338 339 340 341 342 343 344

                # print sample feed_parallel r resultt
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])

                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)

C
chengduoZH 已提交
345
        """
Y
yuyang18 已提交
346 347 348
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
349 350
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
351 352 353 354
            ]
        else:
            places = [
                core.CPUPlace()
355 356
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
357 358 359 360 361 362 363 364 365
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
366
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
367 368 369 370 371 372 373 374
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
375
            return len(_cuda_ids())
Y
yuyang18 已提交
376
        else:
C
chengduo 已提交
377
            return _cpu_num()
Y
yuyang18 已提交
378 379 380 381 382 383

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
384
        """
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
                A :code:`mini-batch` can be regarded as a python generator that returns batchs of input 
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
402
        Raises:
403
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
404

405
        Example:
406 407
            ..  code-block:: python

408
                import numpy as np
409 410
                import paddle
                import paddle.fluid as fluid
411
                import paddle.fluid.compiler as compiler
412
                
413 414 415 416 417 418 419
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])

                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
420
                
421 422
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
423
                
424 425 426
                # a simple network sample
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
427 428
                hidden = fluid.layers.fc(input=data, size=10)
                
429 430
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
431
                
432
                exe = fluid.Executor(places[0])
433
                exe.run(fluid.default_startup_program())
434
                compiled_prog = compiler.CompiledProgram(
435 436
                         fluid.default_main_program()).with_data_parallel(places=places)
                
437
                for i,data in enumerate(reader()):
438 439
                    # print data if you like
                    # print(i, data)
440
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
441 442
                    print(ret)

C
chengduoZH 已提交
443 444
        """

Y
yuyang18 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523


class NumpyToLoDTensorConverter(object):
    def __init__(self, place):
        self.place = place
        self.data = []
        self._reset()

    def _reset(self):
        self.data = []

    def feed(self, data):
        self.data.append(data)

    def done(self):
        arr = numpy.array(self.data)
        t = core.LoDTensor()
        t.set(arr, self.place)
        self._reset()
        return t


class ListTensorProvider(object):
    def __init__(self, generator, places):
        self.generator = generator
        self.converters = []
        self.places = []
        if places:
            if not isinstance(places, (list, tuple)):
                places = [places]
            assert len(
                places) == 1, "dygraph mode CAN NOT specify multiple places."
            for place in places:
                if isinstance(place, (core.CUDAPlace, core.CPUPlace)):
                    self.places.append(place)
                else:
                    raise ValueError(
                        "Please specify a valid place values such as core.CPUPlace or core.CUDAPlace"
                    )
        if len(self.places) == 0:
            self.places.append(_current_expected_place())

    def _readData(self, iterable, places):
        for place, each_sample in six.moves.zip(places, iterable):
            for item in each_sample:
                if len(self.converters) < len(item):
                    for i in item:
                        self.converters.append(NumpyToLoDTensorConverter(place))
                for each_converter, each_slot in six.moves.zip(self.converters,
                                                               item):
                    each_converter.feed(each_slot)
            yield [c.done() for c in self.converters]

    def __call__(self):
        item = []
        for batch in self.generator():
            item.append(batch)
            if len(item) == len(self.places):
                yield list(self._readData(item, self.places))
                item = []