scatter.h 7.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cstring>
17
#include <string>
Z
zchen0211 已提交
18

Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
22
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/place.h"
24
#include "unordered_set"
Z
zchen0211 已提交
25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

/**
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  * Return the updated array pointer, use blas or eigen lib to optimize time
 * cost
 */
template <typename T, typename IndexT = int>
typename std::enable_if<std::is_floating_point<T>::value>::type
elementwise_inner_add(const framework::ExecutionContext& ctx,
                      const T* src_pointer, const T* dist_pointer,
                      T* result_dist_pointer, const framework::Tensor& src,
                      framework::Tensor* dist, const int& src_index,
                      const IndexT& dist_index, const int& slice_size,
                      const size_t& slice_bytes) {
  auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);

  blas.VADD(slice_size, src_pointer + src_index * slice_size,
            dist_pointer + dist_index * slice_size,
            result_dist_pointer + dist_index * slice_size);
}

template <typename T, typename IndexT = int>
typename std::enable_if<!std::is_floating_point<T>::value>::type
elementwise_inner_add(const framework::ExecutionContext& ctx,
                      const T* src_pointer, const T* dist_pointer,
                      T* result_dist_pointer, const framework::Tensor& src,
                      framework::Tensor* dist, const int& src_index,
                      const IndexT& dist_index, const int& slice_size,
                      const size_t& slice_bytes) {
  auto src_slice = src.Slice(src_index, src_index + 1);
  auto dist_slice = dist->Slice(dist_index, dist_index + 1);

  auto eigen_src = framework::EigenVector<T>::Flatten(src_slice);
  auto eigen_dist = framework::EigenVector<T>::Flatten(dist_slice);

  eigen_dist += eigen_src;
}
/**
 * Return an updated tensor from source tensor, scattered according to index:
Z
zchen0211 已提交
68
 * dst[i] = src[index[i]]
Z
zchen0211 已提交
69
 * input[src]: type-T source Tensor
70
 * input[index]: type-IndexT index Tensor (1-D)
Z
zchen0211 已提交
71 72
 * return: output tensor
 */
73
template <typename T, typename IndexT = int>
74 75
void ScatterAssign(const platform::DeviceContext& ctx, const Tensor& src,
                   const Tensor& index, Tensor* output) {
76
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true);
Z
zchen0211 已提交
77
  // check index of shape 1-D
78 79 80 81 82 83 84 85
  if (index.dims().size() == 2) {
    PADDLE_ENFORCE_EQ(index.dims()[1], 1,
                      "index.dims()[1] should be 1 when index.dims().size() == "
                      "2 in scatter_op.");
  } else {
    PADDLE_ENFORCE_EQ(index.dims().size(), 1,
                      "index.dims().size() should be 1 or 2 in scatter_op.");
  }
86
  int index_size = index.dims()[0];
Z
zchen0211 已提交
87

88
  auto src_dims = src.dims();
Z
zchen0211 已提交
89 90
  auto dst_dims = output->dims();

91
  const T* p_src = src.data<T>();
92
  const IndexT* p_index = index.data<IndexT>();
Z
zchen0211 已提交
93 94
  T* p_output = output->data<T>();

Z
zchen0211 已提交
95
  // check src shape and dst shape should match
Z
zchen0211 已提交
96
  for (int i = 1; i < src_dims.size(); i++)
97
    PADDLE_ENFORCE_EQ(src_dims[i], dst_dims[i]);
Z
zchen0211 已提交
98 99 100

  // slice size
  size_t slice_size = 1;
Z
zchen0211 已提交
101
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
Z
zchen0211 已提交
102

Z
1 api  
zchen0211 已提交
103 104 105
  const size_t slice_bytes = slice_size * sizeof(T);

  for (int i = 0; i < index_size; ++i) {
106
    IndexT index_ = p_index[i];
Z
1 api  
zchen0211 已提交
107 108
    memcpy(p_output + index_ * slice_size, p_src + i * slice_size, slice_bytes);
  }
Z
zchen0211 已提交
109 110
}

111 112 113
template <typename T, typename IndexT = int>
void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
                      const Tensor& index, Tensor* output) {
114 115
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.device_context().GetPlace()),
                    true);
116 117
  // check index of shape 1-D
  PADDLE_ENFORCE(index.dims().size() == 1 ||
118 119
                     (index.dims().size() == 2 && index.dims()[1] == 1),
                 "");
120 121 122 123 124 125 126 127 128 129 130 131 132
  int index_size = index.dims()[0];

  auto src_dims = src.dims();
  auto dst_dims = output->dims();

  const T* p_src = src.data<T>();
  const IndexT* p_index = index.data<IndexT>();

  const T* p_output = output->data<T>();
  T* result_p_output = output->data<T>();

  // check src shape and dst shape should match
  for (int i = 1; i < src_dims.size(); i++)
133
    PADDLE_ENFORCE_EQ(src_dims[i], dst_dims[i]);
134 135 136 137 138 139 140 141 142 143 144 145 146

  // slice size
  size_t slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

  const size_t& slice_bytes = slice_size * sizeof(T);

  // if not in overwrite mode, need to init output data
  for (int i = 0; i < index_size; ++i) {
    const IndexT& index_ = p_index[i];
    memset(result_p_output + slice_size * index_, 0, slice_bytes);
  }

147
  // if not in overwrite mode, need to init output data
148 149 150 151 152 153 154 155
  for (int i = 0; i < index_size; ++i) {
    const IndexT& index_ = p_index[i];
    elementwise_inner_add<T, IndexT>(ctx, p_src, p_output, result_p_output, src,
                                     output, i, index_, slice_size,
                                     slice_bytes);
  }
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
template <typename T, typename IndexT = int>
void ScatterNdAdd(const framework::ExecutionContext& ctx, const Tensor& update,
                  const Tensor& index, Tensor* output) {
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.device_context().GetPlace()),
                    true, "It should be running on the CPU");

  // update.shape = index.shape[:-1] + output.shape[index.shape[-1]:]
  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();

  auto output_dims = output->dims();
  auto output_dims_size = output_dims.size();

  const T* p_update = update.data<T>();
  const IndexT* p_index = index.data<IndexT>();
  T* result_p_output = output->data<T>();
  const T* p_output = output->data<T>();

  // final dim
  int64_t end_size = index_dims[index_dims_size - 1];
  // remain dim
  auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
  int64_t remain_numel = framework::product(remain_ddim);
  // slice size
  int64_t slice_size = 1;
  for (int64_t i = end_size; i < output_dims_size; ++i) {
    slice_size *= output_dims[i];
  }
  const size_t slice_bytes = slice_size * sizeof(T);

  for (int64_t i = 0; i < remain_numel; ++i) {
    IndexT index_ = 0;
    IndexT temp = 1;
    for (int64_t j = end_size - 1; j >= 0; --j) {
      IndexT index_value = p_index[i * end_size + j];
      index_ += (index_value * temp);
      temp *= output_dims[j];
    }
    elementwise_inner_add<T, IndexT>(ctx, p_update, p_output, result_p_output,
                                     update, output, i, index_, slice_size,
                                     slice_bytes);
  }
}

Z
zchen0211 已提交
200 201
}  // namespace operators
}  // namespace paddle