layer_helper.py 6.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3
import copy
import itertools

Y
Yu Yang 已提交
4 5 6 7 8
import paddle.v2.framework.core as core

from paddle.v2.framework.framework import Variable, g_program, \
    g_init_program

Y
Yu Yang 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

def unique_name(prefix):
    uid = core.unique_integer()  # unique during whole process.
    return "_".join([prefix, str(uid)])


class LayerHelper(object):
    def __init__(self, layer_type, **kwargs):
        self.kwargs = kwargs
        self.layer_type = layer_type
        name = self.kwargs.get('name', None)
        if name is None:
            self.kwargs['name'] = unique_name(self.layer_type)

    @property
    def name(self):
        return self.kwargs['name']

    @property
    def program(self):
        prog = self.kwargs.get('program', None)
        if prog is None:
            return g_program
        else:
            return prog

Q
QI JUN 已提交
35 36 37 38 39 40 41 42
    @property
    def init_program(self):
        prog = self.kwargs.get('init_program', None)
        if prog is None:
            return g_init_program
        else:
            return prog

Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    def append_op(self, *args, **kwargs):
        return self.program.current_block().append_op(*args, **kwargs)

    def multiple_input(self, input_param_name='input'):
        inputs = self.kwargs.get(input_param_name, [])
        type_error = TypeError(
            "Input of {0} layer should be Variable or sequence of Variable".
            format(self.layer_type))
        if isinstance(inputs, Variable):
            inputs = [inputs]
        elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
            raise type_error
        else:
            for each in inputs:
                if not isinstance(each, Variable):
                    raise type_error
        return inputs

    def input(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        if len(inputs) != 1:
            raise "{0} layer only takes one input".format(self.layer_type)
        return inputs[0]

    @property
    def param_attr(self):
        default = {
            'name': None,
            'init_attr': {
                'type': 'uniform_random',
                'min': -1.0,
                'max': 1.0
            }
        }
        actual = self.kwargs.get('param_attr', None)
Y
Yu Yang 已提交
78 79 80 81 82 83
        if actual is None:
            actual = default
        for default_field in default.keys():
            if default_field not in actual:
                actual[default_field] = default[default_field]
        return actual
Y
Yu Yang 已提交
84

Q
QI JUN 已提交
85
    def bias_attr(self):
Y
Yu Yang 已提交
86 87 88 89 90 91 92
        default = {
            'name': None,
            'init_attr': {
                'type': 'fill_constant',
                'value': 0.0
            }
        }
93 94
        bias_attr = self.kwargs.get('bias_attr', None)
        if bias_attr is True:
Y
Yu Yang 已提交
95 96 97 98 99 100
            bias_attr = default

        if isinstance(bias_attr, dict):
            for default_field in default.keys():
                if default_field not in bias_attr:
                    bias_attr[default_field] = default[default_field]
Y
Yu Yang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        return bias_attr

    def multiple_param_attr(self, length):
        param_attr = self.param_attr
        if isinstance(param_attr, dict):
            param_attr = [param_attr]

        if len(param_attr) != 1 and len(param_attr) != length:
            raise ValueError("parameter number mismatch")
        elif len(param_attr) == 1 and length != 1:
            tmp = [None] * length
            for i in xrange(length):
                tmp[i] = copy.deepcopy(param_attr[0])
            param_attr = tmp
        return param_attr

    def iter_inputs_and_params(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        param_attrs = self.multiple_param_attr(len(inputs))
        for ipt, param_attr in itertools.izip(inputs, param_attrs):
            yield ipt, param_attr

    def input_dtype(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        dtype = None
        for each in inputs:
            if dtype is None:
                dtype = each.data_type
            elif dtype != each.data_type:
                raise ValueError("Data Type mismatch")
        return dtype

    def create_parameter(self, attr, shape, dtype, suffix='w'):
134 135 136 137
        # Deepcopy the attr so that parameters can be shared in program
        attr_copy = copy.deepcopy(attr)
        if attr_copy['name'] is None:
            attr_copy['name'] = unique_name(".".join([self.name, suffix]))
Q
QI JUN 已提交
138
        self.init_program.global_block().create_parameter(
139
            dtype=dtype, shape=shape, **attr_copy)
Q
QI JUN 已提交
140
        return self.program.global_block().create_parameter(
141
            name=attr_copy['name'], dtype=dtype, shape=shape)
Y
Yu Yang 已提交
142 143 144

    def create_tmp_variable(self, dtype):
        return self.program.current_block().create_var(
Q
QI JUN 已提交
145 146 147
            name=unique_name(".".join([self.name, 'tmp'])),
            dtype=dtype,
            persistable=False)
Y
Yu Yang 已提交
148

Y
Yu Yang 已提交
149 150 151
    def create_variable(self, *args, **kwargs):
        return self.program.current_block().create_var(*args, **kwargs)

Y
Yu Yang 已提交
152
    def create_global_variable(self, *args, **kwargs):
Q
QI JUN 已提交
153 154
        return self.program.global_block().create_var(
            *args, persistable=False, **kwargs)
Y
Yu Yang 已提交
155 156

    def append_bias_op(self, input_var):
157
        size = list(input_var.shape[1:])
Q
QI JUN 已提交
158
        bias_attr = self.bias_attr()
Y
Yu Yang 已提交
159 160
        if not bias_attr:
            return input_var
161

Y
Yu Yang 已提交
162
        b = self.create_parameter(
163
            attr=bias_attr, shape=size, dtype=input_var.data_type, suffix='b')
Y
Yu Yang 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        self.append_op(
            type='elementwise_add',
            inputs={'X': [input_var],
                    'Y': [b]},
            outputs={'Out': [tmp]})
        return tmp

    def append_activation(self, input_var):
        act = self.kwargs.get('act', None)
        if act is None:
            return input_var
        if isinstance(act, basestring):
            act = {'type': act}
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        act_type = act.pop('type')
        self.append_op(
            type=act_type,
            inputs={"X": [input_var]},
            outputs={"Y": [tmp]},
            attrs=act)
        return tmp