test_compare_op.py 14.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
Y
Yu Yang 已提交
18 19
import unittest
import numpy
20 21
import numpy as np
import paddle
22
import paddle.fluid as fluid
W
wawltor 已提交
23
import paddle.fluid.core as core
24
from paddle.fluid import Program, program_guard
Y
Yu Yang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39


def create_test_class(op_type, typename, callback):
    class Cls(op_test.OpTest):
        def setUp(self):
            a = numpy.random.random(size=(10, 7)).astype(typename)
            b = numpy.random.random(size=(10, 7)).astype(typename)
            c = callback(a, b)
            self.inputs = {'X': a, 'Y': b}
            self.outputs = {'Out': c}
            self.op_type = op_type

        def test_output(self):
            self.check_output()

40
        def test_errors(self):
41
            paddle.enable_static()
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[2], dtype='int32')
                y = fluid.layers.data(name='y', shape=[2], dtype='int32')
                a = fluid.layers.data(name='a', shape=[2], dtype='int16')
                if self.op_type == "less_than":
                    self.assertRaises(
                        TypeError,
                        fluid.layers.less_than,
                        x=x,
                        y=y,
                        force_cpu=1)
                op = eval("fluid.layers.%s" % self.op_type)
                self.assertRaises(TypeError, op, x=x, y=y, cond=1)
                self.assertRaises(TypeError, op, x=x, y=a)
                self.assertRaises(TypeError, op, x=a, y=y)

Y
Yu Yang 已提交
58 59 60 61 62 63
    cls_name = "{0}_{1}".format(op_type, typename)
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


for _type_name in {'float32', 'float64', 'int32', 'int64'}:
F
furnace 已提交
64 65 66
    if _type_name == 'float64' and core.is_compiled_with_rocm():
        _type_name = 'float32'

Y
Yu Yang 已提交
67
    create_test_class('less_than', _type_name, lambda _a, _b: _a < _b)
68
    create_test_class('less_equal', _type_name, lambda _a, _b: _a <= _b)
Q
qiaolongfei 已提交
69 70
    create_test_class('greater_than', _type_name, lambda _a, _b: _a > _b)
    create_test_class('greater_equal', _type_name, lambda _a, _b: _a >= _b)
Y
Yu Yang 已提交
71
    create_test_class('equal', _type_name, lambda _a, _b: _a == _b)
Q
qiaolongfei 已提交
72
    create_test_class('not_equal', _type_name, lambda _a, _b: _a != _b)
Y
Yu Yang 已提交
73

74

W
wawltor 已提交
75 76 77 78
def create_paddle_case(op_type, callback):
    class PaddleCls(unittest.TestCase):
        def setUp(self):
            self.op_type = op_type
79 80
            self.input_x = np.array([1, 2, 3, 4]).astype(np.int64)
            self.input_y = np.array([1, 3, 2, 4]).astype(np.int64)
W
wawltor 已提交
81
            self.real_result = callback(self.input_x, self.input_y)
82 83 84
            self.place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                self.place = paddle.CUDAPlace(0)
W
wawltor 已提交
85 86

        def test_api(self):
87
            paddle.enable_static()
W
wawltor 已提交
88
            with program_guard(Program(), Program()):
89 90
                x = fluid.data(name='x', shape=[4], dtype='int64')
                y = fluid.data(name='y', shape=[4], dtype='int64')
W
wawltor 已提交
91 92
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
93
                exe = fluid.Executor(self.place)
W
wawltor 已提交
94 95 96 97 98
                res, = exe.run(feed={"x": self.input_x,
                                     "y": self.input_y},
                               fetch_list=[out])
            self.assertEqual((res == self.real_result).all(), True)

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        def test_api_float(self):
            if self.op_type == "equal":
                paddle.enable_static()
                with program_guard(Program(), Program()):
                    x = fluid.data(name='x', shape=[4], dtype='int64')
                    y = fluid.data(name='y', shape=[1], dtype='int64')
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, y)
                    exe = fluid.Executor(self.place)
                    res, = exe.run(feed={"x": self.input_x,
                                         "y": 1.0},
                                   fetch_list=[out])
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((res == self.real_result).all(), True)

114 115 116 117 118 119 120 121 122
        def test_dynamic_api(self):
            paddle.disable_static()
            x = paddle.to_tensor(self.input_x)
            y = paddle.to_tensor(self.input_y)
            op = eval("paddle.%s" % (self.op_type))
            out = op(x, y)
            self.assertEqual((out.numpy() == self.real_result).all(), True)
            paddle.enable_static()

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        def test_dynamic_api_int(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

        def test_dynamic_api_float(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1.0)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

        def test_assert(self):
            def test_dynamic_api_string(self):
                if self.op_type == "equal":
                    paddle.disable_static()
                    x = paddle.to_tensor(self.input_x)
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, "1.0")
                    paddle.enable_static()

            self.assertRaises(TypeError, test_dynamic_api_string)

        def test_dynamic_api_bool(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, True)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

164
        def test_broadcast_api_1(self):
165
            paddle.enable_static()
166
            with program_guard(Program(), Program()):
167 168 169
                x = paddle.static.data(
                    name='x', shape=[1, 2, 1, 3], dtype='int32')
                y = paddle.static.data(name='y', shape=[1, 2, 3], dtype='int32')
170 171
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
172
                exe = paddle.static.Executor(self.place)
173 174 175 176 177 178 179 180
                input_x = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                input_y = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
                res, = exe.run(feed={"x": input_x,
                                     "y": input_y},
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        def test_broadcast_api_2(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[1, 2, 3], dtype='int32')
                y = paddle.static.data(
                    name='y', shape=[1, 2, 1, 3], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                input_y = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
                res, = exe.run(feed={"x": input_x,
                                     "y": input_y},
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        def test_broadcast_api_3(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[5], dtype='int32')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 5).reshape((5)).astype(np.int32)
                input_y = np.array([5, 3, 2]).reshape((3, 1)).astype(np.int32)
                real_result = callback(input_x, input_y)
                res, = exe.run(feed={"x": input_x,
                                     "y": input_y},
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        def test_bool_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.array([True, False, True]).astype(np.bool)
                input_y = np.array([True, True, False]).astype(np.bool)
                real_result = callback(input_x, input_y)
                res, = exe.run(feed={"x": input_x,
                                     "y": input_y},
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

        def test_bool_broadcast_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.array([True, False, True]).astype(np.bool)
                input_y = np.array([True]).astype(np.bool)
                real_result = callback(input_x, input_y)
                res, = exe.run(feed={"x": input_x,
                                     "y": input_y},
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

W
wawltor 已提交
246
        def test_attr_name(self):
247
            paddle.enable_static()
W
wawltor 已提交
248 249 250 251 252 253 254 255 256 257 258 259
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[4], dtype='int32')
                y = fluid.layers.data(name='y', shape=[4], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x=x, y=y, name="name_%s" % (self.op_type))
            self.assertEqual("name_%s" % (self.op_type) in out.name, True)

    cls_name = "TestCase_{}".format(op_type)
    PaddleCls.__name__ = cls_name
    globals()[cls_name] = PaddleCls


260
create_paddle_case('less_than', lambda _a, _b: _a < _b)
W
wawltor 已提交
261 262 263 264 265 266 267
create_paddle_case('less_equal', lambda _a, _b: _a <= _b)
create_paddle_case('greater_than', lambda _a, _b: _a > _b)
create_paddle_case('greater_equal', lambda _a, _b: _a >= _b)
create_paddle_case('equal', lambda _a, _b: _a == _b)
create_paddle_case('not_equal', lambda _a, _b: _a != _b)


268
class TestCompareOpError(unittest.TestCase):
269
    def test_errors(self):
270
        paddle.enable_static()
271 272 273 274 275 276 277 278
        with program_guard(Program(), Program()):
            # The input x and y of compare_op must be Variable.
            x = fluid.layers.data(name='x', shape=[1], dtype="float32")
            y = fluid.create_lod_tensor(
                numpy.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.greater_equal, x, y)


279 280
class API_TestElementwise_Equal(unittest.TestCase):
    def test_api(self):
281
        paddle.enable_static()
282 283 284
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
W
wawltor 已提交
285
            out = paddle.equal(x=label, y=limit)
286 287 288 289 290 291 292 293
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            res, = exe.run(fetch_list=[out])
        self.assertEqual((res == np.array([True, False])).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 3], dtype="int32"))
W
wawltor 已提交
294
            out = paddle.equal(x=label, y=limit)
295 296 297 298 299 300
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            res, = exe.run(fetch_list=[out])
        self.assertEqual((res == np.array([True, True])).all(), True)


301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
class TestCompareOpPlace(unittest.TestCase):
    def test_place_1(self):
        paddle.enable_static()
        place = paddle.CPUPlace()
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
        label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
        limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
        out = fluid.layers.less_than(label, limit, force_cpu=True)
        exe = fluid.Executor(place)
        res, = exe.run(fetch_list=[out])
        self.assertEqual((res == np.array([False, False])).all(), True)

    def test_place_2(self):
        place = paddle.CPUPlace()
        data_place = place
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            data_place = paddle.CUDAPinnedPlace()
        paddle.disable_static(place)
        data = np.array([9], dtype="int64")
        data_tensor = paddle.to_tensor(data, place=data_place)
        result = data_tensor == 0
        self.assertEqual((result.numpy() == np.array([False])).all(), True)


Y
Yu Yang 已提交
327 328
if __name__ == '__main__':
    unittest.main()