c_allreduce_op.h 9.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17

#include <string>
18 19 20 21 22

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"

23
#if defined(PADDLE_WITH_NCCL)
24 25 26 27
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif

28 29 30 31 32
#if defined(PADDLE_WITH_GLOO)
#include <gloo/allreduce.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif

33 34 35 36 37
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/hccl_helper.h"
#endif

38 39 40
namespace paddle {
namespace operators {

41 42 43 44 45 46 47 48 49 50 51 52 53
enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };

class CAllReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
54 55
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
56 57 58 59 60 61 62
  }
};

template <ReduceType red_type, typename T>
class CAllReduceOpCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
#if defined(PADDLE_WITH_GLOO)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    int64_t send_numel = in->numel();
    const T* send_buff = in->data<T>();
    T* recv_buff = out->mutable_data<T>(in->dims(), place);
    auto gloo = paddle::framework::GlooWrapper::GetInstance();
    PADDLE_ENFORCE_EQ(
        gloo->IsInitialized(), true,
        platform::errors::PreconditionNotMet(
            "You must initialize the gloo environment first to use it."));
    gloo::AllreduceOptions opts(gloo->GetContext());
    opts.setInput(const_cast<T*>(send_buff), send_numel);
    opts.setOutput(recv_buff, send_numel);
    switch (red_type) {
      case kRedSum:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::sum<T>));
        break;
      case kRedMax:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::max<T>));
        break;
      case kRedMin:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::min<T>));
        break;
      case kRedProd:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::product<T>));
        break;
      default:
        PADDLE_ENFORCE_EQ(true, false,
                          platform::errors::InvalidArgument(
                              "Invalid reduce type: %d.", red_type));
    }
    gloo::allreduce(opts);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
110 111 112
  }
};

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
template <ReduceType red_type, typename T>
class CAllReduceOpASCENDKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
    auto in = ctx.Input<framework::LoDTensor>("X");
    auto out = ctx.Output<framework::LoDTensor>("Out");

    auto place = ctx.GetPlace();
    hcclDataType_t dtype = platform::ToHCCLDataType(in->type());

    int64_t numel = in->numel();
    void* sendbuff = reinterpret_cast<void*>(const_cast<T*>(in->data<T>()));
    // void* sendbuff = reinterpret_cast<void*>(const_cast<T*>(in->mutable_data<T>(place)));

    out->Resize(in->dims());
    // void* recvbuff = reinterpret_cast<void*>(const_cast<T*>(out->data<T>()));
    void* recvbuff = reinterpret_cast<void*>(const_cast<T*>(out->mutable_data<T>(place)));
    // void* recvbuff = sendbuff;
    std::string tag = ctx.Attr<std::string>("tag");
    int ring_id = ctx.Attr<int>("ring_id");
    // s他的:
    std::string group = std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
     group = "hccl_world_group";// std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);

138
    auto comm = paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    aclrtStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::NPUDeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    hcclRedOp_t hccl_red_type = HCCL_REP_OP_SUM;
    switch (red_type) {
      case kRedSum:
        hccl_red_type = HCCL_REP_OP_SUM;
        break;

      case kRedMax:
        hccl_red_type = HCCL_REP_OP_MAX;
        break;

      case kRedMin:
        hccl_red_type = HCCL_REP_OP_MIN;
        break;

      case kRedProd:
        hccl_red_type = HCCL_REP_OP_PROD;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }


    VLOG(3) << "begin hccl allreduce, parameter is: "
      << "input num: " << numel
      << "dtype: " << dtype
      << "hccl_red_type: " << hccl_red_type
      << ", group is: " << group
      << ", tag is " << tag;

    printf("sendbuff: %p\n", sendbuff);
    printf("recvbuff: %p\n", recvbuff);

    // printf("sendbuff: %p, %d\n", sendbuff, ((int*)sendbuff)[0]);
    // printf("recvbuff: %p, %d\n", recvbuff, ((int*)recvbuff)[0]);

    PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::hcom_all_reduce(
        tag.c_str(), sendbuff, recvbuff, numel, dtype, hccl_red_type, group.c_str(), (void*)stream));

#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
#endif
  }
};

195 196
template <ReduceType red_type, typename T>
class CAllReduceOpCUDAKernel : public framework::OpKernel<T> {
197 198
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
199
#if defined(PADDLE_WITH_NCCL)
200 201 202
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

203
    auto place = ctx.GetPlace();
204
    ncclDataType_t dtype = platform::ToHCCLDataType(in->type());
205 206 207 208 209 210
    int64_t numel = in->numel();
    const void* sendbuff = in->data<void>();
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
211
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
212 213 214 215 216 217 218 219 220

    cudaStream_t stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    ncclRedOp_t nccl_red_type = ncclSum;
    switch (red_type) {
      case kRedSum:
        nccl_red_type = ncclSum;
        break;

      case kRedMax:
        nccl_red_type = ncclMax;
        break;

      case kRedMin:
        nccl_red_type = ncclMin;
        break;

      case kRedProd:
        nccl_red_type = ncclProd;
        break;

      default:
M
MRXLT 已提交
240 241
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
242 243
    }

244
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
245
        sendbuff, recvbuff, numel, dtype, nccl_red_type, comm->comm(), stream));
246
#else
M
MRXLT 已提交
247 248
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
249 250 251 252
#endif
  }
};

253 254 255 256 257 258 259
class CAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor), tensor to be allreduced.");
    AddOutput("Out", "(Tensor) the allreduced result.");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
260 261 262 263 264
#if defined(PADDLE_WITH_ASCEND_CL)
    #pragma message("hccl CAllReduceOpMaker need tag attr")
    AddAttr<std::string>("tag", "(string default tag) tag for all reduce.")
        .SetDefault("tag");
#endif
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
    AddComment(string::Sprintf(R"DOC(
CAllReduce %s Operator

Call collective AllReduce with reduce type %s. If input and output are
the same variable, in-place allreduce will be used.
Reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allreduce
)DOC",
                               GetName(), GetName()));
  }

 protected:
  virtual std::string GetName() const = 0;
};

283 284
}  // namespace operators
}  // namespace paddle