activation.py 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16 17 18 19 20 21 22
from ...fluid.layers import brelu  #DEFINE_ALIAS
from ...fluid.layers import erf  #DEFINE_ALIAS
from ...fluid.layers import hard_sigmoid  #DEFINE_ALIAS
from ...fluid.layers import hard_swish  #DEFINE_ALIAS
from ...fluid.layers import maxout  #DEFINE_ALIAS
from ...fluid.layers import soft_relu  #DEFINE_ALIAS
from ...fluid.layers import swish  #DEFINE_ALIAS
23
from ...fluid.layers import sigmoid  #DEFINE_ALIAS
24 25
from ...fluid.layers import thresholded_relu  #DEFINE_ALIAS

26
__all__ = [
27 28 29 30
    'brelu',
    'elu',
    'erf',
    'gelu',
31
    'hardshrink',
32
    'hardtanh',
33 34
    'hard_sigmoid',
    'hard_swish',
35
    'hsigmoid',
36 37 38
    'leaky_relu',
    'logsigmoid',
    'maxout',
39
    'prelu',
40
    'relu',
41 42 43 44 45 46 47
    'relu6',
    'selu',
    'soft_relu',
    'softmax',
    'softplus',
    'softshrink',
    'softsign',
48
    'sigmoid',
49
    'swish',
50
    'tanhshrink',
51
    'thresholded_relu',
52
    'log_softmax',
53
]
54

55 56 57 58
import warnings
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
from ...fluid import core
59
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
60
import paddle
61

62

63 64 65 66
def elu(x, alpha=1.0, name=None):
    """
    elu activation.

67
    .. math::
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

        elu(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python

83 84 85
            import paddle
            import paddle.nn.functional as F
            import numpy as np
86

87
            paddle.disable_static()
88

89 90 91 92
            x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
            out = F.elu(x, alpha=0.2) 
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    """

    if in_dygraph_mode():
        return core.ops.elu(x, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


def gelu(x, approximate=False, name=None):
    """
    gelu activation.

    if approximate is True
114 115 116

    .. math::

117
        gelu(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))
118

119
    else
120 121 122

    .. math::

123 124 125 126 127 128 129 130 131 132 133 134 135 136
        gelu(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python

137 138 139
            import paddle
            import paddle.nn.functional as F
            import numpy as np
140

141
            paddle.disable_static()
142

143 144 145
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
            out1 = F.gelu(x) # [-0.158655 0.345731 0.841345 1.39979]
            out2 = F.gelu(x, True) # [-0.158808 0.345714 0.841192 1.39957]
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    """

    if in_dygraph_mode():
        return core.ops.gelu(x, 'approximate', approximate)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate})
    return out


162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
def hardshrink(x, threshold=0.5, name=None):
    """
    hard shrinkage activation

    .. math::

        hardshrink(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x > threshold \\
            &x, & & if \ x < -threshold \\
            &0, & & if \ others
            \end{aligned}
            \right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

189 190 191
            import paddle
            import paddle.nn.functional as F
            import numpy as np
192

193
            paddle.disable_static()
194

195 196
            x = paddle.to_tensor(np.array([-1, 0.3, 2.5]))
            out = F.hardshrink(x) # [-1., 0., 2.5]
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

    """
    if in_dygraph_mode():
        return core.ops.hard_shrink(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
def hardtanh(x, min=-1.0, max=1.0, name=None):
    """
    hardtanh activation

    .. math::

        hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

    if in_dygraph_mode():
        return core.ops.brelu(x, 't_min', min, 't_max', max)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min,
               't_max': max})
    return out


266 267 268 269 270 271 272 273 274
def hsigmoid(input,
             label,
             weight,
             bias,
             num_classes,
             path_table=None,
             path_code=None,
             is_sparse=False):
    """
H
hong 已提交
275 276
	:alias_main: paddle.nn.functional.hsigmoid
	:alias: paddle.nn.functional.hsigmoid,paddle.nn.functional.activation.hsigmoid
S
swtkiwi 已提交
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Variable): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 and float64.
        label (Variable): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        weight (Variable): A tensor with shape (num_classes - 1, D) if not using custom tree(path_code and path_table is None), or (num_classes, D) if using custom tree.
        bias (Variable): A tensor with shape (num_classes - 1, 1) if not using custom tree(path_code and path_table is None), or (num_classes, 1) if using custom tree.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        path_table (Variable, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. Default: None.
        path_code (Variable, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. Default: None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        Variable: A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as :attr:`input`.

    Examples:
        .. code-block:: python

            from paddle import fluid, nn
            import paddle.fluid.dygraph as dg
            import paddle.nn.functional as F
            import numpy as np

            main = fluid.Program()
            start = fluid.Program()
            feature_size = 6
            num_classes = 8
            with fluid.unique_name.guard():
                with fluid.program_guard(main, start):
                    x = fluid.data("input", [-1, feature_size],
                                  dtype="float32")
                    label = fluid.data("labels", [-1, 1], dtype="int64")
                    w = fluid.data("weight", (num_classes -1, feature_size), dtype="float32")
                    b = fluid.data("bias", (num_classes -1, ), dtype="float32")
                    y = F.hsigmoid(x, label, w, b, num_classes)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(start)
            feed_dict = {
                "input": np.random.randn(4, feature_size).astype(np.float32),
                "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
                "weight": np.random.randn(num_classes - 1, feature_size).astype(np.float32),
                "bias": np.random.randn(num_classes - 1, ).astype(np.float32),
            }
            y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
            print(y_np.shape)

          # (4, 1)
    """

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()

    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

    helper.append_op(
        type="hierarchical_sigmoid",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)
    return out
386 387


388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
def leaky_relu(x, negative_slope=0.01, name=None):
    """
    leaky_relu activation

    .. math:
        leaky_relu(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x >= 0 \\
            &negative\_slope * x, & & otherwise \\
            \end{aligned}
            \right. \\

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-2, 0, 1]))
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
    if in_dygraph_mode():
        return core.ops.leaky_relu(x, 'alpha', negative_slope)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope})
    return out


439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
def prelu(x, weight, name=None):
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            paddle.disable_static()

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    helper = LayerHelper('prelu', **locals())
    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    # NOTE(): The input of this API should be ``N,C,...`` format, 
    # which means x.shape[0] is batch_size and x.shape[0] is channel.
    mode = 'all'
    if weight.shape[0] > 1:
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
        assert weight.shape[0] == x.shape[
            1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        mode = 'channel'

    if in_dygraph_mode():
        return core.ops.prelu(x, weight, 'mode', mode)

    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode})
    return out


514
def relu(x, name=None):
515
    """
516
    relu activation.
517

518
    .. math::
519 520 521 522

        out = max(x, 0)

    Parameters:
523 524 525
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
526 527

    Returns:
528
        A Tensor with the same data type and shape as ``x`` .
529 530 531 532

    Examples:
        .. code-block:: python

533 534 535
            import paddle
            import paddle.nn.functional as F
            import numpy as np
536

537
            paddle.disable_static()
538

539 540
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
541 542 543
    """

    if in_dygraph_mode():
544
        return core.ops.relu(x)
545

546
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
547
    helper = LayerHelper('relu', **locals())
548 549 550 551 552 553 554 555 556
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


def logsigmoid(x, name=None):
    """
    logsigmoid activation.

557
    .. math::
558

559
        logsigmoid(x) = log \\frac{1}{1 + e^{-x}}
560 561 562 563 564 565 566 567 568 569 570 571
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python

572 573 574
            import paddle
            import paddle.nn.functional as F
            import numpy as np
575

576
            paddle.disable_static()
577

578 579
            x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
            out = F.logsigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
580 581 582 583 584 585 586 587 588 589 590
    """

    if in_dygraph_mode():
        return core.ops.logsigmoid(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'logsigmoid')
    helper = LayerHelper("logsigmoid", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
591 592


593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

        \text{relu6}(x) = \min(\max(0,x), 6)

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
        out = F.relu6(x) # [0, 0.3, 6]

    """
    threshold = 6.0
    if in_dygraph_mode():
        return core.ops.relu6(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
    """
    selu activation

    .. math::

        \text{selu}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))), \\
        with\,alpha=1.6732632423543772848170429916717 and \\
        scale=1.0507009873554804934193349852946

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        scale (float, optional): The value of scale for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha for selu. Default is 1.6732632423543772848170429916717
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([[0, 1],[2, 3]]))
        out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]

    """
    if in_dygraph_mode():
        return core.ops.selu(x, 'scale', scale, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale,
               'alpha': alpha})
    return out


690
def softmax(x, axis=-1, dtype=None, name=None):
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    """
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

717
        softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

766 767 768 769 770 771 772 773 774 775 776 777
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
            to ``dtype`` before the operation is performed. This is useful for 
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
778 779 780 781
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
782 783
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
784 785 786 787

    Examples:
        .. code-block:: python

788 789 790
            import paddle
            import paddle.nn.functional as F
            import numpy as np
791

792
            paddle.disable_static()
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
811
    """
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True if axis is -1 else False

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
            else core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return core.ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'softmax',
                    'If dtype is not None, it only support float32 or float64.')

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': use_cudnn})

    return outs_softmax
849 850


851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
def softplus(x, beta=1, threshold=20, name=None):
    """
    softplus activation

    .. math::

        \text{softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
        \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]

    """
    if in_dygraph_mode():
        return core.ops.softplus(x, 'beta', beta, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta,
               'threshold': threshold})
    return out


def softshrink(x, threshold=0.5, name=None):
    """
    softshrink activation

    .. math::

        \text{softshrink}(x) =
        \begin{cases}
        x - threshold, & \text{ if } x > threshold \\
        x + threshold, & \text{ if } x < -threshold \\
        0, & \text{ otherwise }
        \end{cases}

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
        out = F.softshrink(x) # [-0.4, 0, 0, 0.3]

    """
    if in_dygraph_mode():
        return core.ops.softshrink(x, 'lambda', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold})
    return out


def softsign(x, name=None):
    """
    softsign activation

    .. math::

        \text{softsign}(x) = \frac{x}{1 + |x|}

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]

    """
    if in_dygraph_mode():
        return core.ops.softsign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

        \text{tanhshrink}(x) = x - \text{tanh}(x)

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]

    """
    if in_dygraph_mode():
        return core.ops.tanh_shrink(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1033
def log_softmax(x, axis=-1, dtype=None, name=None):
1034
    """
1035 1036
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1037 1038 1039 1040

    .. math::

        Out[i, j] = log(softmax(x)) 
1041
                  = log(\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
1042 1043

    Parameters:
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
            to ``dtype`` before the operation is performed. This is useful for 
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1057 1058
 
    Returns:
1059 1060
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1061 1062 1063 1064

    Examples:
        .. code-block:: python

1065 1066 1067
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
            paddle.disable_static()

            x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                            [3.0, -4.0, 5.0, -6.0],
                            [-7.0, -8.0, 8.0, 9.0]],
                            [[1.0, -2.0, -3.0, 4.0],
                            [-5.0, 6.0, 7.0, -8.0],
                            [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1089 1090 1091

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1092 1093

    if in_dygraph_mode():
1094 1095 1096
        if dtype is not None:
            x = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return core.ops.log_softmax(x, 'axis', axis)
1097

1098
    if dtype is None:
1099 1100 1101 1102 1103
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
                    'If dtype is not None, it only support float32 or float64.')
1104

1105
    helper = LayerHelper("log_softmax", **locals())
1106
    out_cast = x
1107
    if dtype is not None:
1108
        out_cast = helper.create_variable_for_type_inference(dtype)
1109 1110
        helper.append_op(
            type='cast',
1111 1112 1113
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype,
1114 1115
                   'out_dtype': dtype})

1116
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1117
    helper.append_op(
1118 1119 1120 1121
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis})
1122

1123
    return out