async_executor.h 3.1 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <map>
#include <memory>
#include <mutex>  // NOLINT
#include <set>
#include <string>
#include <thread>  // NOLINT
#include <typeinfo>
#include <vector>
25 26
#include <random> //local_random_engine
#include <time.h> //local_random_engine
W
Wang Guibao 已提交
27 28 29 30 31 32 33 34
#include "paddle/fluid/framework/data_feed.pb.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"

namespace paddle {
namespace framework {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

inline double current_realtime() {
    struct timespec tp;
    clock_gettime(CLOCK_REALTIME, &tp);
    return tp.tv_sec + tp.tv_nsec * 1e-9;
}

inline std::default_random_engine& local_random_engine() {
    struct engine_wrapper_t {
        std::default_random_engine engine;
        engine_wrapper_t() {
            static std::atomic<unsigned long> x(0);
            std::seed_seq sseq = {x++, x++, x++, (unsigned long)(current_realtime() * 1000)};
            engine.seed(sseq);
        }
    };
    thread_local engine_wrapper_t r;
    return r.engine;
}

W
Wang Guibao 已提交
55 56 57 58 59 60 61 62 63 64
class AsyncExecutor {
 public:
  AsyncExecutor(Scope* scope, const platform::Place& place);
  virtual ~AsyncExecutor() {}
  void RunFromFile(const ProgramDesc& main_program,
                   const std::string& data_feed_desc_str,
                   const std::vector<std::string>& filelist,
                   const int thread_num,
                   const std::vector<std::string>& fetch_names,
                   const bool debug = false);
65 66 67 68 69 70
  //void ConfigPslib(const char* dist_desc, uint64_t* host_sign_list, int node_num, int index);
  void ConfigPslib(const std::string& dist_desc, std::vector<uint64_t>& host_sign_list, int node_num, int index);
  //void ConfigWorker() {}
  void StartServer();
  void InitModel();
  void SaveModel(const std::string& path);
W
Wang Guibao 已提交
71 72 73 74 75 76 77 78

 private:
  void CreateThreads(ExecutorThreadWorker* worker,
                     const ProgramDesc& main_program,
                     const std::shared_ptr<DataFeed>& reader,
                     const std::vector<std::string>& fetch_var_names,
                     Scope* root_scope, const int thread_index,
                     const bool debug);
79
  void PrepareDenseThread();
W
Wang Guibao 已提交
80
 public:
81 82
  std::shared_ptr<paddle::distributed::PSlib>  _pslib_ptr;
  std::shared_ptr<DensePullThread>  _pull_dense_thread;
W
Wang Guibao 已提交
83 84
  Scope* root_scope_;
  platform::Place place_;
85 86 87 88
  
  AsyncWorkerParamConfig _param_config;
 private:
  int actual_thread_num;
W
Wang Guibao 已提交
89 90
};

91 92


W
Wang Guibao 已提交
93 94
}  // namespace framework
}  // namespace paddle